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Abstract. Investment in clean power depends on the price of internationally
traded fossil fuels. To what extent can major fossil fuel exporters such as the
U.S. influence global electricity decarbonization through their trade policy?
To answer this question, I develop and estimate a dynamic, multi-country
model of investment in power generation infrastructure, where the carbon
intensity of electricity generation is affected by the entry and exit of plants
using alternative fuels and the local price of fossil inputs is determined in
a global trade equilibrium. Using this model, I assess the climate impact of
granting federal approval to all proposed U.S. liquified natural gas (LNG)
export terminal projects, which would double U.S. export capacity by 2030.
Results indicate a net decrease in global emissions through 2070, primarily
due to higher local gas prices in the U.S., leading to lower domestic gas
generation and accelerated renewable adoption. In the rest of the world,
short-term emissions fall as reliance on coal drops, yet delayed renewable
uptake drives long-term emissions up. Combining the LNG expansion
with carbon policies in importing countries substantially boosts carbon
savings. Conversely, reverting LNG capacity to baseline by 2050 shows little
impact, underscoring the risk of carbon lock-in in settings with long-lived
infrastructure.
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1 Introduction

Reducing the carbon intensity of electricity production is fundamental to achieve cli-
mate goals, as electricity currently accounts for 40% of global CO2 emissions (IEA,
2022). Transitioning towards cleaner sources of electricity generation requires large in-
vestments in renewable energy and storage infrastructure, in tandem with a phase-out
of existing fossil fuel generation assets. In order to achieve this goal, many countries
have enacted policies ranging from the introduction of carbon taxes and renewable en-
ergy mandates to the provision of subsidies to solar and wind installation costs. The
majority of these policies have targeted domestic power emission reductions. How-
ever, because fossil fuel inputs used in electricity generation are globally traded com-
modities, domestic policies affecting their prices can create cross-border spillover ef-
fects and influence decarbonization incentives in power sectors across the world.

Global fossil fuel markets have become increasingly interconnected in the last decade
due in part to the US emergence as the world's largest liquified natural gas (LNG)
exporter. LNG —natural gas cooled into liquid form to facilitate its transportation
over long distances —currently accounts for 60% of natural gas interregional trade,
and has become the largest mode of natural gas imports for Asia and Europe (En-
ergy Institute, 2024). The U.S. began exporting LNG in 2016 with the inauguration of
its first liquefaction terminal. The rapid infrastructure expansion process that ensued
meant that, by 2023, the U.S. was exporting 18% of its production and had become the
world leader in LNG exports. This LNG export boom could accelerate in the coming
decade, with proposed projects that would more than double U.S. LNG export capac-
ity by 2030. In January 2024, the U.S. Department of Energy, which oversees approvals
for export terminal projects, paused new project reviews to revise its environmental
impact assessment approach.1 Two primary environmental concerns have been iden-
tified. First, LNG exports may increase gas reliance in importing countries, delaying
the adoption of renewables (Cahill and Majkut, 2024). Second, LNG emits methane,
a greenhouse gas (GHG) over 8 times more potent than CO2 (Howarth, 2024). On the
other hand, LNG proponents argue that cheaper gas internationally could help reduce
coal reliance in import countries, and that exporting gas could hasten the U.S. transi-
tion to renewables by increasing local gas prices (Dalena et al., 2022; Rapier, 2024).

Is this expansion of U.S. LNG exports a challenge or an opportunity for global elec-
tricity decarbonization? My project tackles this question by building a novel dynamic
model of investment in electricity generation infrastructure in a world with interna-
tionally traded fossil fuels. In the model, markets are world regions and agents are
power generators characterized by their type, which is given by the energy input they
use to produce electricity (coal, natural gas, wind, or solar). While wind and solar
generators supply power inelastically, the production decision of fossil fuel (natural

1The decision suspends the approval of new authorizations to export LNG to countries that do not have a
Free Trade Agreement (FTA) with the U.S., which comprise the majority of current U.S. LNG destinations
and account for the bulk of global LNG import volumes. The only major LNG importer that has an FTA
with the U.S. is South Korea, accounting for only 6% of total U.S. LNG exports in 2023 (EIA, 2024).
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gas and coal) generators depends on wholesale electricity prices and the price of their
fossil fuel input. Electricity demand is inelastic to price but depends on market char-
acteristics, and wholesale electricity prices are determined in a perfectly competitive
equilibrium.2 Every period, a large number of potential entrants of each type makes
an entry decision based on type-specific installation costs and expected profits, and
incumbent generators decide whether to exit the market or remain as incumbents by
paying an age-dependent maintenance cost.3 Power generators take fossil fuel prices
are given, but these are determined endogenously in an open economy equilibrium.
Natural gas and coal are produced under increasing marginal costs in all markets.
Both fossil fuels can be sold domestically at local prices or exported at international
prices, but exporting involves trade costs and requires the use of capacity-constrained
export terminals. An expansion in export capacity affects both local and global fossil
fuel prices by inducing a change in the relative scarcity of fossil fuels across regions.

From the perspective of electricity investment, my model captures a key dynamic
trade-off posed by natural gas in the transition to renewables: a decrease in gas prices
can incentivize a higher entry rate of gas-fueled generators, which compete in elec-
tricity markets with higher-emitting coal generators and might drive their exit. At the
same time, cheaper gas generation might delay the adoption of newer clean technolo-
gies, such as solar generation or electricity storage. From the perspective of global
climate policy, my model captures a trade-off generated by domestic decarboniza-
tion initiatives under a lack of international coordination: policies that might induce a
faster energy transition in one country might also delay the transition in others.

Assessing the impact of fossil fuel trade policy on global decarbonization requires
examining the key factors driving electricity investment worldwide. To make progress
on this front, I collect and harmonize data for the 26 largest electricity markets in
the world, which account for 80% of global electricity generation. My data includes
country-level information on fossil fuel prices, production, consumption, and trade,
as well as information on electricity demand, carbon taxes, renewable potential and
generator installation costs. I complement this country-level data with a panel on
worldwide electricity assets that allows me to track the entry and exit of generators by
fuel type, age, and other generator-specific characteristics.

I leverage this data to structurally estimate the main parameters governing electricity
generation and investment in my model. A first important element is the elasticity of
power generation to input price fluctuations, which influences intensive margin re-
sponses to fossil fuel supply shocks and is also a key determinant of generator profits.
To estimate this parameter, I combine data on electricity prices, fossil fuel prices and

2In this project, I focus on modeling supply-side investment determinants for electricity generation and
consider a simplified market setting with perfect competition in spot wholesale markets. An extensive lit-
erature has studied electricity production choices and price determination in settings with market power
and strategic bidding (Reguant, 2014; Bushnell, Mansur and Saravia, 2008; Wolfram, 1998; Borenstein,
Bushnell and Wolak, 2002). For an interesting recent study on energy transition policy in the context of
rate-of-return regulation, see Gowrisankaran, Langer and Reguant (2024).
3The model also introduces endogenous investment in electricity storage assets, which offset the inter-
mittency of renewable generation.
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the observed capacity use of fossil fuel generators. I use shocks to oil prices and the
availability of renewable generation as instruments to deal with the potential endo-
geneity of production decisions to unobserved supply shocks. To recover maintenance
costs —important determinants of exit decisions in power markets —I exploit varia-
tion in the timing of exit of generators operating in different markets and with varying
age.4 To capture unobserved shifters to installation costs —which explain generator
entry decisions conditional on observed profits —I solve for paths of electricity in-
vestment using the full structure of my model and find the parameters that reduce the
distance between model-predicted patterns and observed entry rates.5

The extent to which an export capacity shock spills over to domestic and foreign mar-
kets depends critically on the price elasticity of fossil fuel supply and on the magni-
tude of fossil fuel trade costs. I recover upstream fossil fuel supply elasticities from
IV regressions that exploit shifts in prices coming from changes in electricity demand
conditions. Finally, I use data on the capacity use of fossil fuel export terminals, freight
rates and customs prices to measure the variation of trade costs across time and space.

I use my model to consider the potential effect of an expansion in U.S. LNG export
capacity. I simulate the evolution of global fossil fuel prices, electricity generation ca-
pacity, and emissions from 2025 to 2070 under two scenarios: one in which all LNG
projects under review get built and one in which only LNG export terminals currently
operating or under construction are ever active. The shock generates a cumulative
reduction in global power-related CO2 emissions that translates into global social sav-
ings of USD 314bn when using recent estimates of the monetized value of emission
damages from the U.S. Environmental Protection Agency (EPA, 2023).6

A major driver of this decarbonization effect is the increase in U.S. local gas prices
generated by the export shock, which reduces gas-fueled power generation locally.
This effect is consistent with reduced-form evidence on the negative relationship be-
tween fossil fuels prices and the production choices of the generators that use them,
presented in Section 2. The shock also induces an increase in the domestic pace of
renewable adoption which more than offsets a gas-to-coal substitution effect. As a
result, cumulative U.S. power-sector emissions are reduced by 6% compared to the

4The structure of my model allows me to use discrete Euler methods (Arcidiacono and Miller, 2011;
Hsiao, 2022; Hall, 1978; Scott, 2013) to recover exit determinants from linear regressions. This approach
requires deriving equations that compare the exit probability of a generator in subsequent years. Con-
tinuation values difference out by finite dependence, which holds because exit is a terminal action.
5My setting is one with complex transitional dynamics that feature non-stationarity, particularly because
renewable entry costs are decreasing over time. To deal with this feature when solving the model, I
leverage the nonstationary equilibrium concept recently developed in Benkard, Jeziorski and Weintraub
(2024). This approach allows me to capture the short and medium-run market dynamics of power sector
investment in a computationally-light way. It relies on a finite horizon approximation to the infinite-
horizon problem, a method also used in the macroeconomics literature (Maliar et al., 2020).
6In addition to the effect of LNG on worldwide power sector emissions, an important concern related to
the climate footprint of this form of export is the fact that the liquefaction and transport of LNG generates
additional methane and CO2 emissions relative to the local consumption of gas. Using EPA's measure
of climate damages, I show that social savings from the shock are still positive when taking into account
the additional methane emissions generated by increased LNG exports. As discussed in Section 8, life-
cycle assessments of the LNG expansion are, however, sensitive to how climate damage from methane is
valued relative to carbon damage (Kleinberg, 2024).
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baseline scenario.7 In the rest of the world, the effect of the policy varies across time
and space. Cheaper LNG prices first generate emission reductions in importing coun-
tries by incentivizing a less intensive use of coal-based electricity plants in countries
with large coal fleets, but later drive a widespread delay in the adoption of renewable
energy and storage. Long-term emission increases out-weight short-term reductions
in the rest of the world, generating cumulative emission gains in importing countries.8

Given that the decarbonization effect of the U.S. LNG export expansion is mitigated by
the long-term emission increase in importing countries, are there policies that could
limit this effect in the rest of the world? I first consider whether coordinating the
LNG export capacity expansion with domestic carbon policies in climate-concerned
LNG importers could induce a larger cumulative reduction in emissions. I find that,
if the EU, the UK and Japan impose a binding carbon cap in response to the export
expansion, global social cost savings from emission reductions are increased by 62%.

I next consider whether, in the absence of international coordination, the U.S. could
reduce long-term emission impacts by simply reversing the LNG expansion by 2050,
once international emissions begin to grow. I find that this policy reversal is not ef-
fective in reducing global emissions, and actually increases emissions in the rest of
the world relative to the case where U.S. LNG export capacity is permanently higher.
This finding highlights the risk of carbon-lock in a setting with sunk investments and
long-lived assets: once importing countries have invested in building new gas power
infrastructure because of lower LNG prices, this early capacity increase permanently
increases gas generation even under higher future LNG prices. The lock-in of gas
generation occurs even if the U.S. can fully commit to shutting down additional LNG
export infrastructure in the future, but is even more pronounced when commitment
is not possible and agents do not anticipate the infrastructure reversal. More broadly,
this result underscores that temporary policy interventions in global energy markets
can have long-lasting effects on the trajectory of global emissions.

My work contributes to a growing empirical IO literature studying how industry dy-
namics shape the effects of environmental and energy policy (Fowlie, Reguant and
Ryan, 2016; Ryan, 2012; Elliott, 2024; Chen, 2024). Relative to existing papers, I intro-
duce endogenous fossil input prices and allow for multiple technological types in a
model of firm entry and exit. My findings also connect to the literature on directed
technical change and the environment (Acemoglu et al., 2012, 2016; Aghion et al.,
2016). Most closely connected to my project, Acemoglu et al. (2023) builds a dynamic
closed economy model in which natural gas prices affect both the use of coal in elec-

7In contemporaneous work, Stock and Zaragoza-Watkins (2024) argues that the start of U.S. LNG ex-
ports in 2016 reconnected local gas prices to world market prices, after a hiatus of “shut-in” fracked gas.
Projecting local natural gas and coal prices under scenarios with and without recoupling and feeding
these projections to the NREL ReEDS model, this work estimates that the price reconnection reduces
U.S. 2030 power sector emissions by around 145 million metric tons. My findings on the local effect of a
further LNG export expansion are in line with these results.
8Results hold under alternative assumptions on the evolution of renewable and storage installation costs,
as discussed in Section 8.
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tricity generation and the pace of innovation in renewable technologies.9 In my model,
natural gas poses a similar trade-off in terms of current and future emissions, but this
trade-off arises from the specific nature of electricity infrastruture investment, which
involves large sunk costs and long-lived assets. The extent to which this trade-off op-
erates in practice is governed by the distribution of generator entry and exit costs over
time and space, which I structurally estimate.

Given its focus on fossil fuel trade policy as a driver of global decarbonization, my
project also builds on a rich literature on international environmental policy coordina-
tion (Nordhaus, 2015; Böhringer, Carbone and Rutherford, 2016; Hsiao, 2022; Farrokhi
and Lashkaripour, 2024; Kortum and Weisbach, 2022; Barrett, 2006) and the environ-
mental effects of trade policy (Copeland and Taylor, 2003; Shapiro, 2021; Kortum and
Weisbach, 2016). I contribute to these works by proposing a quantitative model of
global energy markets and showing how to leverage publicly available data to esti-
mate the parameters governing agents' production and investment decisions. A re-
lated paper that has followed a similar approach is Arkolakis and Walsh (2023), which
develops a spatial model of global electricity transmission networks but abstracts from
the heterogeneous availability of fossil fuels across space, a key feature to understand
the effect of a fossil fuel export supply shock. Finally, my work is connected to a grow-
ing theoretical literature on supply-side environmental policies (Hoel, 1994; Harstad,
2012; Harstad and Holtsmark, 2024; Holtsmark and Midttømme, 2021), which has
highlighted the importance of addressing time-inconsistency and international coor-
dination problems in the design of fossil fuel policies. I quantitatively evaluate these
forces in the context of the U.S. LNG expansion and propose a framework that, more
broadly, can be used to think about supply-side policy design in a global equilibrium.

Interest in the climate impacts of U.S. LNG exports is rapidly growing, as reflected
in recent work examining their effects on U.S. power sector emissions (Stock and
Zaragoza-Watkins, 2024) and performing life-cycle analyses of their GHG footprint
(Howarth, 2024; Feldman and McCabe, 2024; Zhu, Allen and Ravikumar, 2024), the
latter of which inherently rely on accounting frameworks that are not suited to exam-
ine the equilibrium shifts in fuel use triggered by a policy shock.10 My research, to the
best of my knowledge, is the first to provide a comprehensive analysis of the climate
impacts of U.S. LNG exports in global equilibrium. This work aims to contribute to the
ongoing re-assessment of the environmental impact of LNG terminal projects and to
broaden the discussion on the role of fossil fuel trade policy in global decarbonization.

9Harstad and Holtsmark (2024) refers to this dynamic trade-off as the “gas trap”, and argues that it
generates a time-inconsistency problem for policy design: a “climate-friendly” gas producer has an op-
timal long-term policy of curtailing gas production to incentivize renewables, but is tempted to expand
gas production in the short-term to outcompete coal. Market anticipation of this short-term incentive
generates a long-term increase in emissions.

10These works perform a full accounting of the emissions generated in the production, transportation and
consumption of a fuel. They provide a detailed comparison between the GHG footprint of LNG relative
to alternative ways of achieving the same level of energy provision, e.g. comparing emissions from
generating an amount of power in China using U.S. LNG relative to those that would be produced using
locally-sourced coal. However, they do not take into account equilibrium substitution effects induced
by an LNG supply shock. Prior to the LNG authorization pause, DOE relied on the life-cycle analysis in
Roman-White et al. (2019) to provide environmental support for the approval of LNG exports.

6



2 Background

2.1 Drivers of power sector decarbonization

The carbon intensity of power generation varies widely across the world.11 This het-
erogeneity is primarily explained by differences in the type of power generators that
are installed in each country. While coal-fueled generators produce more than twice
the emissions per unit than gas-fueled generators, both are carbon-intensive electricity
sources relative to renewables. Although the share of renewables in the global electric-
ity has increased rapidly in the last ten years, driven in large part by a decline in the
installation cost of renewable generation, fossil fuels still accounted for 61% of elec-
tricity generation worldwide in 2023. The pace of decarbonization in the power sector
has been uneven across countries, with some regions making significant progress in
reducing the carbon intensity of their electricity production, while others have seen
little change or even an increase in carbon emissions.12

Figure 1: Electricity generation breakdown by source (2022)
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Note: Breakdown of electricity generation by energy source based on annual data at the country level from Ember.

Building a power generator involves large sunk costs and generators are long-lived
assets, which means that investment decisions can have long-lasting effects on emis-
sions. Data on retirement episodes of coal and gas generators across the world in
2000-2023 show that the average age of retired coal generators was 38 years, while
the average age of retired gas generators was 36 years.13 This propensity of fossil fuel
generators to stay active in a market for a long period means that the age distribu-
tion of generators in a given market is relevant to predict future transition dynamics.
Figure 2 shows that the age distribution of fossil generators exhibits a lot of variation

11As an example, India generated almost twice as many carbon emissions per unit of electricity in 2022
than the U.S., and 2.5 times as many than the European Union. Appendix Figure A1 shows a map of
power carbon intensity across the world.

12Figure A2 in the Appendix shows the evolution of power emission intensity across world regions. The
European Union, China and the U.S. have exhibited the largest reductions in carbon intensity since 2005.
Meanwhile, Asia Pacific has experienced an increase in carbon intensity relative to the same year.

13See section 5 for a description of the generator-level data used throughout this project.
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across the world, with India and China having a younger fleet of both coal and gas
generators than the European Union and the U.S.14

Figure 2: Fossil generator installed capacity by age (2022)
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Note: Installed capacity breakdown by age constructed from generator-level data on coal and gas generators from
Global Energy Monitor Infrastructure Tracker. See Section 5 for a description of this data source.

Fossil fuel prices are an important determinant of profits in the power sector, and thus
a major driver of technological choice. In the U.S., for example, fuel costs accounted
for an average 78% of the total operating expenses of fossil fuel power plants in 2012-
2022.15 Across the world, lower fossil fuel prices are associated with higher reliance on
fossil fuels for electricity generation, as depicted in figure 3. This partly explains why
electricity mixes vary widely across countries with different resource endowments.
However, the price of fossil fuels is not only determined by local supply and demand
conditions, but also by international trade. The next section provides an overview
of fossil fuel trade, with a particular focus on LNG as a driver of natural gas trade
expansion.

Figure 3: Fuel share of electricity generation and local fuel prices
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Note: Binscatter regression using annual data on fuel share of electricity generation and fuel prices by country for 51
countries in 2000-2023. Controls include GDP, other fossil fuel prices, and region and year fixed effects. See Appendix
Table A1 for regression results, including a version using coal and gas reserves as instruments for prices.

14In my model, I account for generator age as a determinant of exit decisions. See section 3 for a detailed
description of the model.

15https://www.eia.gov/electricity/annual/html/epa 08 04.html
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2.2 LNG and the U.S. export boom

The main fossil fuels used for electricity generation, thermal coal and natural gas,
are both internationally traded commodities. 16% of global thermal coal production
and 30% of natural gas production was traded internationally in 2023. Although nat-
ural gas trade was historically limited to intra-regional flows through long-distance
pipelines, the development of liquified natural gas (LNG) infrastructure has led to
the creation of new, cross-regional trade links. Today, around half of global natural
gas trade is conducted through LNG, with the U.S. being the world’s largest LNG
exporter in 2023, closely followed by Qatar and Australia.

LNG is natural gas that has been cooled to -162 degrees Celsius, which reduces its
volume by 600 times and allows it to be transported across the world through long
distances. Exporting and importing LNG requires specialized infrastructure, namely
liquefaction plants (in charge of turning gas into liquid form), LNG carriers (special-
ized tank ships), and regasification terminals (which turn LNG back into gaseous form
to allow local transportation through pipelines). Around the world, the construction
of this specialized infrastructure is subject to government approval. This gives govern-
ments' an important policy tool to influence fossil fuel international trade and prices
specially since the industry operates under binding export capacity constraints. Figure
4 shows that the average capacity utilization rate of LNG export terminals ascended to
86.6% in 2023, with major exporters such as Qatar and the U.S. operating their facilities
at almost full capacity.16

Figure 4: Capacity utilization in global LNG export terminals (2023)
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ing design of a facility. Export terminals can thus operate over full nameplate export capacity in a given year.

The question of how to regulate fossil fuel export infrastructure build-out in the con-
text of the climate transition has become recently more salient due to the rise of U.S.

16The high capacity utilization of LNG liquefaction or export terminals contrasts with a much lower
capacity utilization in LNG regasification or receiving terminals. Figure A3 in the Appendix shows
that global regasification capacity utilization has stayed below 45% in the last two decades. Due to this
reason, in my model I explicitly account for export-side LNG capacity constraints, but abstract from
regasification capacity constraints.
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LNG exports. The U.S. experienced a major shift in its natural gas trade balance in just
one decade due to advent of fracking and the shale gas revolution (Figure 5). Faced
with a surplus of local natural gas, the U.S. first started exporting natural gas as LNG
in 2016 and quickly started ramping up LNG exports. By 2023, the U.S. was export-
ing 18% of its production and had become the world leader in LNG exports, with a
pipeline of export terminal projects that could double its export capacity by 2030 (Fig-
ure 6). This dramatic shift was cited by the Biden Administration when, on January 26,
2024, it announced a pause on Department of Energy (DOE) export license approvals
pending an update of its methodology to evaluate the economic and environmental
impact of LNG projects.17 As of November 2024 export approvals were still on hold,
with DOE yet to release its new methodological guidelines. Meanwhile, public de-
bate on the environmental implications of U.S. LNG exports are centered around two
main discussion points. The first one focuses on emissions generated by the extrac-
tion and transportation of natural gas through the LNG supply chain (Howarth, 2024;
Roman-White et al., 2019). The second one has to do with long-term implications for
the domestic and international transition to renewables.

The remainder of this paper builds a quantitative model of global energy trade and
electricity investment to adress both of these points. The next section introduces the
open economy model of electricity investment that I use to analyze the potential effects
of the pause on LNG export approvals. I first set up the investment problem of power
producers in a closed economy, and then show how I endogenize fossil fuel prices
within a global framework.

Figure 5: Evolution of U.S. natural gas trade trade flows and balance
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Note: the left-most and center panel show the evolution of U.S. LNG exports and imports respectively in billion cubic
meters. Trade flows in these panels are broken down by mode of transport (LNG or pipeline). The right-most panel
show the evolution of the U.S. natural gas trade balance, adding across modes of transport.

17See https://www.whitehouse.gov/briefing-room/statements-releases/2024/01/26/fact-sheet-biden-
harris-administration-announces-temporary-pause-on-pending-approvals-of-liquefied-natural-gas-
exports/ for the official statement announcing this decision. For a detailed historical narrative of United
States' emergence as a natural gas superpower, as well as on the regulatory process that underpins LNG
export terminal approvals, see Stock and Zaragoza-Watkins (2024).
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Figure 6: U.S. LNG Export Capacity
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3 A model of dynamic investment in electricity generation

Time is discrete and measured in years. Agents in the model are electricity generators,
which operate in a given market j ∈ J . In this section, I focus on how production
and investment decision are made in a generic local market j. In the next section, I
turn to the interaction between local markets when I specify how fossil fuel prices are
determined.

Generators are characterized by their type f , which is given by the energy source the
use as input. I first assume that there are four potential generator types: gas (g), coal
(c), solar (s), and wind (w), and no intermittency in electricity supply.18 In Appendix
B, I present an extension to the baseline model where I incorporate intermittency and
endogenous entry of storage facilities.

Generators at time t have a given age a ∈ {0, 1, ..., A}, which depends on their time of
entry. In period t, the industry state space St contains the distribution of incumbent
characteristics and exogenous determinants of demand and supply, which include the
prices of fossil fuels.

The timing of the model is as follows. Every period, incumbents and potential entrants
make entry and exit decisions after observing the industry state space Sjt, entry costs
and scrap value draws. Following this, electricity markets open and incumbent play-
ers make their production choices. Lastly, entry and exit decisions are implemented
and the state evolves.

18All other generator types in the data (.e.g. nuclear, oil, biomass) are taken as exogenous market supply.
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3.1 Static game

Upon entering a market, an electricity generator ω is endowed with a capacity kω.
Generator capacities cannot be adjusted over time. Every period, all incumbent gen-
erators in a market choose how much electricity to produce taking the price of elec-
tricity as given, i.e. electricity markets are perfectly competitive. Electricity demand is
perfectly inelastic and given by Djt.19

Solar and wind generators have constant zero marginal costs, so that they produce at
their full available capacity whenever the wholesale electricity price is positive. The
available capacity of a renewable generator ω of type f is given by

k̃ω( f )jt = φ f jkω( f )jt ∀ f ∈ {w, s},

where φ f j ∈ [0, 1] represents the capacity factor of solar/wind generators and varies
across markets depending on natural characteristics (wind speed, sunshine hours per
year).

Gas and coal generators have production costs that are a function of the price of their
type-specific fossil fuel input and are increasing in their capacity use. I assume that
a generator ω of type f ∈ {c, g} chooses production by solving the following profit
maximization problem:

max
qω( f )jt

πω( f )jt = pelec
jt qω( f )jt −

(
β1 f γ1 f jt p f jt + β2 f

qω( f )jt

kω( f )jt
+ χ f jt + ϵ f jt

)
qω( f )jt ∀ω ∈ Ω f jt,

∀ f ∈ {c, g},
(1)

where pelec
jt is the price of electricity, p f jt is the type-specific input price, and χ f jt and

ϵ f jt are shocks to the marginal production cost of a generator of type f .20 β1 f is the
parameter governing the efficiency of fossil-fueled generators, while γ1 f jt is a time and
market-varying shock to this efficiency.21 Meanwhile, β2 f > 0 is a scale parameter,
governing the extent to which production costs are increasing in capacity use. Note
that I assume that all incumbent generators of the same type have a homogeneous
efficiency and that capacity use enters marginal costs linearly. These assumptions
imply that, in equilibrium, all generators of the same type in the same market will
have the same optimal capacity use, i.e.

19Since I do not observe electricity prices for all the markets in my sample, I unfortunately cannot estimate
a price-elastic demand function. In simulations, I allow electricity consumption to vary across markets
and years according to observed demand patterns, and I use industry projections for future periods as
detailed in Section D of the Appendix. When I extend my model to introduce storage and intermittency,
I allow electricity consumption to vary within the year as explained in Appendix section B.

20Both shocks are observed by generators at the time of their production decision, but χ f jt is observed by
the econometrician while ϵ f jt is not.

21Together, β1 f and γ1 f jt determine the number of units of input f required to generate one unit of
electricity at a given moment in time.
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q∗ω( f )jt

kω( f )jt
= q̃ f jt(pelec

jt , p f jt) ∀ω ∈ Ω f jt, ∀ f ∈ {c, g}. (2)

Adding across the supply decisions of generators of all types, aggregate market sup-
ply of electricity can thus be written as

Q(pelec
jt , Kjt, p f jt) = φsKsjt + φwKwjt + ∑

f∈{c,g}
q̃ f jt(pelec

jt , p f jt, ϵ f jt)K f jt, (3)

where Kjt = {Kgjt, Kcjt, Ksjt, Kwjt} contains the aggregate capacities of generators of
each type at time t and market j.

3.2 State Transitions

State transitions in the model are affected by endogenous entry and exit of generators,
as well as the evolution of electricity demand determinants and of generator entry
costs. I now describe optimal entry and exit strategies conditional on a given belief
on the evolution of industry and exogeneous state variables, and turn to describe how
beliefs are formed in the next subsection.

Exit In order to be active next year, generators need to pay a per-unit of capacity
maintenance cost that depends on their fuel type and age. At the start of every period,
generators observe an IID logit shock ϕ to their maintenance cost and decide whether
to pay it - in which case they will be incumbents next period - or exit the market.

The value function of an incumbent generator of age a and type f is given by

Va f t(Sjt) = π f (Sjt) + max
{

0, βE[Va+1 f t(Sjt+1)|Sjt]− (Fa f t + ϕ)
}

, (4)

where Fa f t is the deterministic component of the maintenance cost. The expectation
over continuation values is taken over all future maintenance shock draws and the
strategies of current and future competitors.

An incumbent generator will exit the market if its maintenance cost is higher than its
continuation value. This event occurs with probability22

22Given that most solar and wind capacity has been installed in the last 10 years, there is not enough data
on their exit patterns to estimate the distribution of their fixed costs and endogenize their exit decisions.
Instead, I assume that all non-fossil generators (and storage facilities) have fixed maintenance costs F̄f
and a fixed operating life T̄f , which I calibrate based on engineering estimates. I provide details on these
assumptions in the Estimation section.

13



ζa f (Sjt) = Pr(ϕ > βE[Va+1 f (Sjt+1)|Sjt]− Fa f t) = 1 − Fϕ(βE[Va+1 f (Sjt+1)|Sjt]− Fa f t).
(5)

Entry Every period there is a number N f of potential entrants of each generator type
that decide whether to enter the market or not based on the current value of the type-
specific entry cost κ f jt and a random IID logit shock ϕ̄.23 The value of entry for a
generator of type f is given by

VE f (Sjt) = βE[V0 f (Sjt+1)|Sjt]− κ f jt. (6)

A generator will thus enter the market if its entry cost shock draw ϕ̄ is lower than the
net entry value, an event that occurs with probability

ζ̄ f (Sjt) = Pr(ϕ̄ > VE f (Sjt)) = Fϕ̄(VE f (Sjt)). (7)

3.3 Equilibrium and Beliefs

I now turn to specifying how agents beliefs’ about future state transitions and the
actions of their competitors are formed, and describe the equilibrium concept that I
use to solve my model. An important aspect of my setting is the fact that the entry
costs of new renewable technologies are falling over time, i.e. the distribution of state
variables is non-stationary. Accounting for the presence of non-stationarity is criti-
cal to capturing how short-term and medium-term transition dynamics respond to
changes in fossil fuel prices, which is the focus of this project. To do so, I rely on the
Nonstationary Oblivious Equilibrium (NOE) concept recently developed by Benkard,
Jeziorski and Weintraub (2024).

NOE imposes two key assumptions. The first is that firms make decisions assuming
that the industry state evolves deterministically. This can be thought as an approxi-
mation to a setting with an infinite number of firms, where firm-specific entry and exit
shocks would wash out and the percentage of firms that transition from any individual
state to another would be deterministic. NOE further assumes that firms believe the
evolution of exogenous state variables, e.g. renewable installation costs and electricity
demand, is also deterministic.

23Entry costs are per-unit of generation capacity (as are maintenance costs). Note that, because generators
of type f in a given market are assumed to be homogeneous and because non-operating costs are per-
unit of capacity, the exact distribution of capacity across market entrants in period t does not affect the
current market equilibrium nor future transition dynamics. In my simulations, I assume that generators
enter the market with one unit of capacity and set the maximum number of entrants N f to be equal to 10
times the largest observed capacity entry in any of the markets in my sample during 2001-2021.
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Under these assumptions —and further assuming symmetrical strategies across firms
of the same type —the time period determines the industry state and any common
shocks. The (expected) evolution of the aggregate capacity of generators of type f and
age a can be written as

K̃a f jt+1(ζa f , ζ
entry
f , K0a f j) =

ζa f (Sjt)K̃a f jt(ξa f , ξ
entry
f , Ka f j0) + N̄ζ

entry
f (Sjt) if a = 0,

ζa f (Sjt)K̃a f jt(ξa f , ξ
entry
f , Ka f j0) otherwise,

∀ f ∈ F , ∀a ∈ A f .
(8)

Equation (8) completely characterizes the evolution of the industry state. For a given
starting state K0, a NOE will consist on exit strategies ζa f ∀ f , ∀a ∈ [1, Ā f ], and entry
strategies ζ

entry
f ∀ f characterized by (5) and (7), such that the expected evolution of the

industry state is given by (8). I further assume, as in Benkard, Jeziorski and Weintraub
(2024), that NOE becomes stationary as time progresses. Specifically, I assume that
there is a terminal period T̄ after which all firms believe that the industry enters into a
steady state. In this way, finding a NOE becomes equivalent to solving a finite horizon
problem. The solution algorithm I use is described in Appendix C.

4 Fossil Fuel Markets in an Open Economy

The electricity investment model presented in the preceding section highlights the im-
portance of energy inputs for investment decisions in electricity sectors worldwide. To
assess how global shocks to energy input supply affect decarbonization efforts across
the world, I now bring my closed-economy electricity investment model into a frame-
work where energy inputs are internationally traded and their price is endogenous. In
Appendix B, I further show how I incorporate an endogenous carbon price for markets
that operate a cap-and-trade emission trading scheme such as the EU and UK.

Energy demand Consider a country j that produces electricity under the model out-
lined in the previous section. Existing generation capacity and demand fundamentals
determine the country’s demand for gas and coal inputs to be used in electricity gen-
eration. In equilibrium, the quantity of fossil fuel f used to produce electricity is given
by:

Delec
f jt = Delec

f (p f jt, K f jt, pelec
jt ) ∀ f ∈ {coal, gas}, (9)

where the electricity price, pelec
jt , is itself a function of demand fundamentals, the prices

of all energy inputs and the available capacity of all types.
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In country j, energy inputs are also demanded for other local uses (e.g. residential
heating and manufacturing). The overall demand for input f for other local uses in a
period is given by

Dother
f jt = Dother

f (p f jt, Xjt), (10)

where Xjt is a vector of exogenous country characteristics that affects demand for fossil
f in non-electricity sectors.

Lastly, an exporting country j has K f jt export terminals that purchase input f domes-
tically, transform it and ship it internationally.24 I assume that the profit of a terminal
k ∈ K f jt is given by the following expression

πk f jt = pexport
f jt Xk f jt − cexport

(
p f jt,

X f jt

Kexport
f jt

)
Xk f jt s.t. Xk f jt ≤ Kexport

k f jt , (11)

where Kexport
k f jt is the export capacity of terminal k, and pexport

f jt is the price at which
it exports the processed input. cexport(·) is a unit cost function that is increasing in
the domestic price of the fossil fuel input f and increasing in the exporter’s capacity
use. I assume that export terminals choose the export quantity that maximizes their
profits taking both domestic and export prices as given. Given this optimal choice, the
aggregate demand for the local input can be expressed as

X f jt = X f (p f jt, Kexport
f jt , pexport

f jt ). (12)

Overall demand for fossil fuel f in country j is then

D f jt = Delec
f (p f jt, K f jt, pelec

f jt ) + Dother
f (p f jt, Xjt) + X f (p f jt, Kexport

f jt , pexport
f jt ). (13)

Energy supply Countries have two ways of sourcing energy input f . First, they can
produce it domestically, with production function

Q f jt = Q f (p f jt, Xjt). (14)

24Natural gas can be exported through pipelines or as LNG. In my simulation exercises, I take pipeline
exports and imports as an exogenous component of fossil fuel f demand and supply for each country j,
and only endogenize the decision to export natural gas as LNG.
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Second, they can purchase it from international export terminals, at import price pimport
f jt .

Aggregate supply is thus

Q̃ f jt = Q f (p f jt, Xjt) + M f (pimport
f jt ). (15)

Equilibrium I start by assuming that there is one international market clearing price
for each fossil fuel (p∗f t). On top of this international market clearing price, the effec-
tive price that importers pay and exporters receive is also affected by trade costs. I
introduce trade costs in a stylized way. I assume that effective import price and export
prices satisfy

pimport
f jt = δ

import
j (p∗f t + τf ) (16)

pexport
f jt = δ

export
j p∗f t, (17)

where τf is a fuel-specific additive transport cost, and δ
import
j and δ

export
j are country-

specific shifters that capture country heterogeneity in distance to markets, bargaining
power, and other factors that might generate a deviation from average international
prices.

In equilibrium, every domestic market for fossil fuel f has to clear, and trade has to be
balanced. The equilibrium conditions are as follows:

Q̃ f jt(p f jt, p∗f t, ·) = D f jt(p f jt, p∗f t) ∀j ∈ J , (18)

∑
j

M f (p∗f t) = ∑
j

X f (p∗f t, p f jt, Kexport
f jt ). (19)

In essence, for each fossil fuel f there are J domestic markets and one international
market that have to be cleared together.

5 Data

For my quantitative analysis, I split the world into regions that roughly correspond
to electricity markets. My simulation sample is made up of 28 markets including 24
countries, the European Union, and three US regions (West, East and Texas, roughly
corresponding to the existing US electricity interconnections). These markets, shown
in figure (7), accounted for 87% of global electricity generation and were responsible
for 86% of emissions produced in electricity generation in 2023.
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To estimate the parameters of my model and conduct my simulation analysis, I collect
and harmonize data on fossil and electricity markets from multiple sources. I provide
an overview of my data sources below.

Figure 7: Markets in sample

Note: The map depicts the 28 markets included in my simulation sample. Each market is a country, with the exception
of the U.S. (split into Eastern U.S., Western U.S., and Texas), and the European Union (aggregated into a single market).
For a full list of sample markets, see Appendix D.

Electricity generation infrastructure & investment determinants My model fea-
tures endogenous entry and exit of electricity generators. To estimate the parameters
governing these choices, I build a dataset with detailed information on global electric-
ity generation assets. For each electricity generator that has been active at any point
between the years 2000 and 2023 in any market of my sample, I collect information on
their fuel type, date of entry, date of exit, installed capacity, and other characteristics.
The starting point of my data construction is the Global Energy Monitor (GEM) In-
frastructure Tracker, which provides detailed information on the current fleet of global
electricity generators. In order to get a full panel of electricity generation assets, which
I need to identify entry and exit events, I extend this dataset with information from
local electricity regulatory authorities.

Electricity investment determinants Electricity investment choices depend on mar-
ket conditions and infrastructure costs. Annual market-level data on electricity de-
mand and supply by generator type comes from Ember and the U.S. Energy Informa-
tion Agency (EIA). In order to estimate electricity supply functions, I complement this
data with monthly information on electricity demand, supply, wholesale electricity
prices and carbon prices for a sample of selected markets, which I collect from local
regulatory authorities. I also retrieve survey data on installation costs and fixed oper-
ating costs by generator type and market from the International Energy Agency (IEA)
and the International Renewable Energy Agency (IRENA). Lastly, I use information
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on wind and solar potential by market from the Global Solar Atlas and the Global
Wind Atlas.

Fossil fuel markets The local price of fossil fuels is a key determinant of electricity
generation costs and input supply in my model. I build a panel of annual thermal coal
and natural gas prices from 2001 to 2022 for the markets in my sample by collecting
and harmonizing data from local regulatory agencies and international organizations
(International Gas Union Wholesale Gas Survey, IEA, EIA). I complement this data
with monthly information on trade prices and flows for both thermal coal and LNG
from COMTRADE and WITS, together with information on LNG and coal freight rates
from Refinitiv. Data on annual fossil fuel supply by market comes from IEA, and data
on proved fossil fuel reserves from EIA.

Trade infrastructure Infrastructure constraints are a key determinant of thermal coal
and LNG trade flows. Data on the location and capacity of both coal and LNG termi-
nals comes from GEM’s Infrastructure Tracker. A useful aspect of the GEM data is that
it provides information on planned and under-construction terminals, which I use to
construct counterfactual forward-looking scenarios.

6 Estimation

This section outlines my approach to recovering the parameters that govern equilib-
rium choices in my model. I begin by detailing the estimation of static supply and
demand functions for electricity and fossil fuels, along with the determinants of trade
costs. Given the existing electricity generation capacity, these elements are sufficient
to determine global equilibrium quantities and prices in my quantitative simulation
of fossil fuel and power markets. I then provide an overview of my method for iden-
tifying entry and exit determinants for electricity generators worldwide, which drive
the transition dynamics in the model.

6.1 Electricity supply

Gas and coal generators From the profit function in (1), and given the assumption
that all generators of the same type within a market are homogeneous in their produc-
tion costs, the interior solution to the quantity choice problem of a generator of type f
in market j can be written as

pelec
jt = β1 f γ1 f jt p f jt + β2 f

q f jt

K f jt
+ χ f jt + ϵ f jt ∀ f ∈ {c, g}. (20)
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I obtain the parameters in (20) in two steps. First, I obtain a measure of γ1 f jt from IEA,
which provides an indicator of the average annual efficiency of electricity plants by
fuel and country for the period 2000-2022.25 With estimates γ̂1 f jt in hand, I rewrite
(20) as

pelec
jt = β1 f p̃ f jt︸︷︷︸

γ̂1 f jt p f jt

+β2 f
q f jt

K f jt
+ χ f jt + ϵ f jt ∀ f ∈ {c, g}. (21)

I separately recover β1 f and β2 f for each electricity generation type (gas and coal)
through IV regressions based on specification (21). To do so, I collect monthly elec-
tricity prices, fossil fuel prices, and aggregate capacity use of generators by type for a
sample of global electricity markets. My estimation sample has monthly market-level
information for 2016-2023.26

Generator capacity use is endogenous to unobserved supply shocks (ϵ f t). To deal with
this source of endogeneity, I instrument coal and gas generator capacity use with the
capacity use of renewable generators in a given market and period. The underly-
ing logic for this instrument is that changes in the availability of renewable electricity
sources —which are largely driven by climate conditions and thus arguably uncorre-
lated with fossil fuel generation supply shocks —act as a shift in the residual demand
faced by gas/coal generators.

In my setting, fossil fuel prices are also potentially endogenous to shocks to electricity
supply. I address this source of endogeneity by instrumenting p̃ f jt —the efficiency-
adjusted price of fossil fuel f —with the monthly price of Brent oil. The relevance
of the instrument comes from the fact that local natural gas prices are affected by
global oil price shocks due to the existence of gas-oil co-extraction and the fact that
natural gas contracts have been historically indexed to oil prices. Oil is almost not
used for electricity generation in my sample, which limits the potential endogeneity
of the instrument to electricity supply shocks. Relying on variation in a global price
rather than on local oil prices also limits endogeneity concerns.27

Estimation results are presented in Table 1, with first stage results shown in Appendix
Table A2. The coefficient associated with the efficiency-adjusted fossil fuel price, β1 f , is
close to unity for both generator types. This implies that the average response of elec-
tricity prices to fossil fuel shocks is consistent with the generator efficiency measure

25In the case of OECD countries, IEA obtains this data through annual questionnaires to national admin-
istrations. For non-OECD countries, IEA constructs this indicator based on a mix of publicly reported
data and questionnaires to national authorities. A full list of sources is available in International Energy
Agency (2024b).

26In estimation, markets are defined as either countries (i.e. Japan, South Korea, and all countries in the
European Union) or subnational units (i.e. U.S. balancing authorities). Details on how I construct my
baseline sample are provided in Appendix D.

27Any exogenous shift to natural gas prices spills over to coal prices due to coal-to-gas substitution in
electricity generation. Coal prices also react to oil price shocks because they affect the cost of coal trans-
portation.
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obtained from IEA. I recover positive estimates of β2 f for both coal and gas generators,
consistent with the existence of increasing marginal costs.28

Table 1: Electricity supply parameters

Gas Coal

OLS IV OLS IV

(1) (2) (3) (4)

Efficiency-adj fuel price (β1 f ) 0.906∗∗∗ 0.992∗∗∗ 1.51∗∗∗ 0.975∗∗∗

(0.135) (0.171) (0.102) (0.231)
Capacity use (β2 f ) 24.1∗∗∗ 37.8∗∗∗ 8.53∗∗∗ 46.5∗∗∗

(3.46) (8.12) (2.73) (12.7)

Observations 2,226 2,226 2,226 2,226
Adjusted R2 0.817 0.886 0.807 0.790
Within Adjusted R2 0.502 0.691 0.474 0.429
F-test, Efficiency-adj fuel price (β1 f ) 14.9 207.1
F-test, Capacity use (β2 f ) 122.5 47.5

Region x year fixed effects ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Notes: Elec. supply estimation draws on monthly data from 2016 to 2023 for electricity markets in US,
EU, Korea and Japan. Robust standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Renewable generators I assume all wind and solar generators have zero marginal
costs but differ in their capacity factor φ f j, which determines what fraction of their
installed capacity is effectively active in a given year. The Solar and Wind Atlas pub-
lished by the World Bank contains detailed grid data on capacity factors for both re-
newable types. I compute φ f j as the population-weighted average of the capacity
factor of renewable type f within the geographical area of market j. Figure 8 shows
the spatial distribution of φ f j for both solar and wind.

28My estimation sample is limited to a subset of the markets and periods I use in my counterfactual
analysis, and has a different time aggregation (monthly vs. annual). When simulating the full model
equilibrium, I extrapolate β1 f and β2 f for all markets and years in my simulation sample. Appendix F
details the approach I follow to extrapolate observed cost shifters in χ f jt.
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Figure 8: Renewable energy capacity factors

Solar capacity factor
0.125 0.150 0.175

Wind capacity factor
0.1 0.2 0.3

Note: capacity factors are population-weighted averages constructed based on grid data from the Global Solar Atlas
and the Global Wind Atlas.

6.2 Fossil fuel supply

I parametrize the log supply curves of gas and coal as

Gas : log(Qgjt) = α
g
1 log pgjt + α

g
2 log Rgjt + α

g
3,j log Qoil

jt + γ
g
j + ϵgjt (22)

Coal : log(Qcjt) = αc
1 log pcjt + αc

2 log Rcjt + γc
j + ϵcjt. (23)

Market-level production of gas Qgjt and coal Qcjt are both functions of domestic prices
p f jt, available reserves Rgjt, and market fixed effects γ

f
j , where f denotes the respec-

tive fossil fuel. In addition, I account for the fact that natural gas is often extracted as
a by-product of oil by including oil production into the natural gas supply function.
Lastly, domestic fossil fuel prices are endogenous, as unobserved supply shocks ϵ f jt
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can decrease prices by reducing supply. Thus, I instrument for prices with the interac-
tion between local electricity demand and the share of electricity generation that uses
fossil fuel f in the year prior to the beginning of my sample. The use of this instrument
is motivated by the fact that shifts in a markets’ total electricity demand affect demand
for fossil fuel f as an input, more so in countries that are initially more reliant on that
fossil fuel for electricity generation. The exclusion restriction requires that shifts in
aggregate electricity demand are orthogonal to fossil fuel supply shocks.29

I implement my estimation using annual data for 2000-2021 for a sample of markets
that account for 82 % and 95% of global natural gas and coal supply throughout the pe-
riod.30 Results are presented in Table 2, while first stage results are shown in Appendix
Table A4. Without instrumenting for the price of fossil fuels, I get price parameter esti-
mates with a strong downward bias, particularly for coal. Under the IV specifications,
I find that coal supply is around three times more elastic to price changes than natural
gas supply. This has important implications for the potential effect of a global gas sup-
ply shock such as the expansion of LNG export capacity. First, because gas supply is
relatively inelastic, an expansion in natural gas exports potentially leads to increases in
the domestic gas prices of exporting countries. Second, because coal supply is elastic,
a decrease in coal demand due to relatively lower LNG prices in importing countries
will likely not lead to big declines in domestic coal prices, thus amplifying the effect
of the gas supply shock on coal-to-gas substitution incentives.

29One potential concern is the fact that electricity prices could be affected by fossil fuel supply shocks
and that aggregate electricity demand might be elastic to electricity prices in the long-term, biasing my
estimates for price elasticities upwards. I obtain similar coefficients for both coal and gas when I use the
evolution of population —a determinant of electricity demand that is arguably uncorrelated with prices
—as an instrument.

30Markets in my full sample that are not included in the fossil fuel estimation mostly have zero or close
to zero production during the period of my analysis. In counterfactuals, I fix their production of fossil
fuel f at observed levels and assume that it remains constant at 2021 levels when projecting supply into
the future.
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Table 2: Fossil fuel supply parameters

Gas Coal

OLS IV OLS IV

(1) (2) (3) (4)

log(Price) 0.064∗∗∗ 0.239∗∗∗ 0.201∗∗∗ 0.769∗∗∗

(0.019) (0.078) (0.059) (0.081)
log(Reserves) 0.087∗∗ 0.350∗∗∗ -0.015 0.250∗∗

(0.035) (0.074) (0.052) (0.098)
log(Oil production) 0.408∗∗∗ 0.333∗∗

(0.060) (0.138)

Observations 310 310 298 298
Adjusted R2 0.995 0.977 0.994 0.979
Within Adjusted R2 0.845 0.305 0.748 0.039
F-test (1st stage), log(Price) 53.2 70.4

Country fixed effects ✓ ✓ ✓ ✓

2016+ dummy x Country fixed effects ✓ ✓ ✓ ✓

Notes: Supply estimation draws on annual data from 2000 to 2021 for markets accounting for 82%
and 95% of natural gas and coal global production respectively. The IV columns instrument for fossil
fuel prices with shocks to aggregate electricity demand interacted with the share of the fossil fuel in
generation in 2000. Newey-West standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

6.3 Non-electricity fossil fuel demand

I assume the following log-linear function for the demand for natural gas for non-
electricity uses:

log(Dother
gjt ) = α̃

g
p log pgjt + α̃

g
XXjt + ϵgjt, (24)

where Xjt is a vector of exogenous country characteristics that includes GDP, popu-
lation, and country fixed effects. I use annual data on gas prices, non-electricity gas
demand and country characteristics to estimate (24). To instrument for the gas price,
I use the evolution of proven domestic gas reserves and global oil prices as supply
shifters. Results are presented in Table 3. As expected, the elasticity of non-electricity
gas demand to price changes is negative but relatively low.
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Table 3: Non-electricity gas demand

OLS IV

(1) (2)

log(Price) -0.030 -0.128∗

(0.031) (0.071)
log(GDP p.c.) 1.19∗∗∗ 1.32∗∗∗

(0.166) (0.182)
log(Population) -0.042 0.084

(0.646) (0.652)
log(GDP p.c.) × OECD 0.552∗ 0.642∗∗

(0.296) (0.297)
log(Population) × OECD 0.141 -0.190

(0.753) (0.746)

Observations 421 421
Adjusted R2 0.993 0.993
Within Adjusted R2 0.652 0.634
F (1st Stage), log(Price) 50.4

Country fixed effects ✓ ✓

2016+ dummy x Country fixed effects ✓ ✓

Notes: Column (2) uses per capita gas reserves and Brent oil price as an instruments for the gas price.
Newey West standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

6.4 Trade determinants

My model features two types of fossil fuel trade costs, which I estimate separately.
First, the model incorporates export costs that are increasing on export capacity use,
which I estimate leveraging data on observed trade flows and infrastructure capacity.
Second, the model includes origin- and destination-specific trade shifters, which I cal-
ibrate to match observed differences in export and import prices across countries. I
provide details on both of these elements below.

Export supply functions In the model, each country j that exports fossil fuel f has
a set of export terminals K f jt that choose their optimal export quantity by optimizing
the profit function in (11). I parametrize the unit export cost c(·) in (11) as follows:

cexport
(

p f jt,
X f jt

Kexport
f jt

)
= γ0 f j + γ1 f

X f jt

Kexport
f jt

+ ϵk f jt. (25)
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Given this functional form for cexport(·), the interior solution to problem faced by an
export terminal k that trades fossil fuel f can be written as

p∗f jt − p f jt = γ0 f j + 2γ1 f
X f jt

Kexport
f jt

+ ϵk f jt. (26)

I take (26) to the data to recover the parameters governing the export supply of LNG
and coal for each exporting country. For LNG, I construct a panel of capacity use at
the export terminal level by matching terminal capacity data from GEM Infrastructure
Tracker with annual export quantity data at the terminal-level from Refinitiv. I get
country-level average annual LNG export prices from COMTRADE, and assume that
each export terminal faces the same price. I do not have data on export quantities
at the terminal level for thermal coal, so in this case I aggregate export capacity data
from GEM at the country level and match it to annual export quantity data from IEA.
Country-level export prices again come from COMTRADE.

Results are presented in Table 4. I find that the unit cost of exporting both commodi-
ties is increasing in capacity use. At the mean capacity use, export costs are on aver-
age USD 4.20 per million British thermal unit (MMBtu)31 for LNG and USD 1.90 per
MMBtu for coal at 2021 constant prices.32

Table 4: Export cost parameters

LNG Coal
(1) (2)

Export capacity use 0.560∗∗ 1.40∗∗∗

(0.216) (0.476)

Observations 113 162
Adjusted R2 0.555 0.279
Avg. sum FE 3.78 0.916
Mean capacity use 0.761 0.452

Country fixed effects ✓

Region fixed effects ✓

Notes: Robust standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Trade costs and country-specific trade shifters I calibrate the trade cost τf for each
fossil fuel using data on the daily freight rates paid in thermal coal and LNG trans-

31Throughout this paper, I measure both LNG and thermal coal prices in MMBtus, a common unit to
measure the heating content and the value of a fuel.

32My estimates for LNG export costs are roughly in line with Zou et al. (2022), which reports global
liquefaction fees in the range of 2-4 USD per MMBtu based on industry estimates for a sample of projects.
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actions between major trading partners in 2012-2023, which I source from Refinitiv.
I take the weighted average freight rate for each fossil fuel type, weighting country
pairs by their share on global trade.33 My calculation yields average freight rates of
USD 0.75 per MMBtu and USD 0.41 per MMBtu for LNG and thermal coal respectively
(in constant 2021 prices). Country-specific shifters δ

export
j and δ

import
j are calibrated to

match average differences between the mean global FOB export price of fossil fuel f ,
country-specific FOB export prices and domestic fossil fuel prices in importing coun-
tries.

6.5 Transitions

Exit Incumbent gas and coal generators decide whether to exit the market based on
their expected future path of profits and the maintenance costs they face. I parametrize
the deterministic component of maintenance costs as

Fa f jt = γ f j + γa f + ϵa f jt. (27)

γ f j are market specific fixed effects, and γa f are age group fixed effects. Given the
structure of the model and the assumption that maintenance costs are subject to ran-
dom IID logit shocks ϕ, I can recover the parameters in (27) through a linear structural
regression, without having to compute continuation values (Arcidiacono and Miller,
2011; Hotz and Miller, 1993; Hall, 1978; Scott, 2013). Appendix F presents derivations.
The structural equation that I obtain compares exit probabilities in a given market and
for a given generator type in years t and t + 1 and ages a and a + 1:

ζ̃a f jt − β
{

log
[

exp ζ̃a+1 f jt+1 + 1
]
+ γ

}
= β

π f jt+1

σf
−

γe
f j

σf
−

γe
a f

σf
+ ϵ̃a f jt, (28)

where ζ̃a f t = log(1 − ζa f jt)− log(ζa f jt) is a transformation of the exit probability ζa f jt

and γ is the Euler constant. σf is the variance of fixed cost shocks. The larger σf is, the
less coal and gas exit depends on future market conditions.

To take equation (28) to the data, I need first to construct a measure of exit probabil-
ity by generator type, market, year and age. To do so, I rely on the data on global
generator exit events from Infrastructure Tracker described in Section 4. I obtain exit
probabilities from Probit regressions of exit events in the data on market-year fixed
effects and generator age. To construct a measure of profits, I use my estimated elec-
tricity supply parameters together with data on observed capacity use by generator
type, year and market, as well as data on market-specific fossil fuel prices. I instru-
ment future profits with current period profits to account for expectational error in
agents’ decisions (Scott, 2013).

33Coal freight rates are reported in metric tonnes. To get a freight rate value in MMBtu, I use IEA annual
data on the average caloric value of thermal coal exports for the exporters in my sample.
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Results are presented in Table 5. For both gas and coal generators, maintenance costs
are increasing in age, but more so for gas generators. Fixed costs represent an average
50% of variable profits in my sample.

Table 5: Generator maintenance cost parameters

Gas Coal
(1) (2)

1-20 years 15,501.0∗∗∗ 26,661.0 ∗∗∗

(6,509.2) (7,565.5)
21-40 years 19,639.4∗∗∗ 33,915.0∗∗∗

(7,252.0) (10,665.9)
41-60 years 22,434.2∗∗∗ 40,363.34 ∗∗∗

(9,400.0) (14,867.4)
61-80 years 26,185.4∗∗∗ 43,958.0∗∗∗

(12,325.5) (18,954.2)

Logit scale (σexit
f ) 39,719.0∗∗∗ 32,549.0∗∗∗

(9758.2) (7,140.3)

Observations 5,388 6,488

Entry The entry decision of generators depends both on expected future profits and
generator installation costs. I obtain data from a survey on the installation costs of so-
lar and onshore wind generators for selected countries from 2010 to 2022 from IRENA.
I complement this data with information on the installation costs of gas and coal gener-
ators by region from IEA. None of these sources has information on taxes or subsidies
applied to the installation of generators across countries. In addition, heterogeneity
in regulatory barriers to entry might be relevant to explain differences in the rate of
entry of generators of different types across countries.

To deal with the potential presence of unknown shifters to entry costs, I first parametrize
the distribution of entry costs for fossil fuel f in country j and time t as

EC f jt ∼ G(s f j IC f jt, µIC f jt), (29)

where G is the Gumbel distribution and IC f jt are observed installation costs in my
data. s f j is a type and market-specific shifter to installation costs. In addition, I allow
for a time-variant variance for entry costs that depends on observed installation costs
and parameter µ.

Estimation of entry parameters proceeds in two steps. First, I recover µ using Euler
methods. Intuitively, I identify µ from the correlation between differences in entry
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probabilities across time, fuels and markets and differences in profits (net of installa-
tion costs), similarly to the procedure I follow to recover the variance of maintenance
costs.34

Next, I recover s f j by minimizing the distance between the power capacity transitions
predicted by the model and those observed in the data. The data moments I match are
the absolute changes in electricity generation capacity by fuel type for each of the mar-
kets in my sample from 2001 to 2021. My estimation algorithm proceeds as follows.
In each iteration, I start with a guess of LNG and international coal prices. Given this
guess, I find the vector of market-specific parameters that minimizes the distance be-
tween model and data moments, performing this minimization independently market
by market. Once I obtain a set of parameters for each market, I compute the full global
equilibrium in my model and update the guess of equilibrium LNG and international
coal prices. I repeat this process until the difference between LNG and international
coal prices across successive iterations is below a tolerance level.

A summary of how mean market and fuel-level installation costs change when I mul-
tiply them by the estimated entry cost shifters is presented in Figure 9. Incorporating
the estimated entry cost shifters lowers solar entry costs in the U.S., China, Japan and
Western Europe relative to the gross installation costs reported by IRENA. Meanwhile,
average installation costs across fuel types in Asia Pacific and India are higher than in
my data when incorporating estimated cost shifters.

Figure 9: Installation Costs
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Note: Color bars indicate average installation costs in 2021 per region and fuel type from IRENA and IEA data. Black
bars denote the installation costs after adjusting for the shifter s f j.

34As discussed before, I can construct a measure of realized profits by generator type, market and year
using data on observed capacity use by generator type and fossil fuel prices, together with my electricity
supply estimates. I recover realized entry probalities using the entry events reported in the Infrastruc-
ture Tracker data and assuming the same maximum capacity entry per year that I impose in my model
simulations.
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7 Model Fit

To assess the fit of my model, I simulate a global equilibrium using 2001 as a starting
year and 2070 as a terminal year. Then I compare the evolution of the endogenous
variables in my model to actual data on fossil fuel prices, consumption and trade, as
well as on electricity generation and electricity capacity. Figures 10 and 11 compare
my model predictions with observed data. Tables A5 and A6 in the Appendix show
that my baseline projections for future electricity capacity and generation by market
and fuel are in line with industry predictions to 2050 taken from the International
Energy Agency (IEA) and the U.S. Energy Information Administration (EIA).

30



Figure 10: Model fit: fossil fuel markets
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Figure 11: Model fit: electricity generation by type (in TWh)
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Note: every point is a market-year pair. 45-degree line in dashed red.

8 Effect of a shock in U.S. LNG export capacity

I use the full structure of my estimated model to analyze the decarbonization im-
pacts of the proposed build-out of US LNG export terminals in the coming years. As
described in Section 2, the U.S. Department of Energy is currently in the process of
reviewing several export terminals projects that, if built, would more than double US
LNG export capacity by 2030. My main counterfactual analysis compares the evolu-
tion of global fossil fuel prices, electricity generation capacity and emissions from 2025
to 2070 in two scenarios: one in which all LNG proposed projects get built and one in
which only LNG export terminals currently operating or under construction are ever
active. After providing an overview of my baseline results, I next discuss how differ-
ent technological paths and alternative policy combinations would change the effect
of the shock.35

8.1 Baseline results

Effect on prices and power generation Figures 12 provides an overview of my re-
sults. In response to the shock, U.S. LNG exports increase by an average 20% across
2025-2070 relative to the baseline scenario, generating an annual increase in global
LNG trade of 6.4% on average.36 Higher U.S. LNG exports reduce the gap between
U.S. natural gas prices and the international price of LNG. I find that the export shock
increases U.S. domestic gas prices by an average 5.4% throughout the period of anal-

35Details on the simulation algorithm and on assumptions about the future evolution of exogenous state
variables in my model are provided in the Appendix to this document.

36This growth rate is small when compared to the sizable U.S. export capacity expansion that I
feed into my counterfactual. Results are driven by the presence of slack in the LNG market un-
der my baseline projections, with natural gas demand growing by less than global export capac-
ity in 2025-2070 even in the absence of the U.S. LNG shock. This supply overcapacity aligns
with industry analysts recently voicing corcerns about the heightened risk of LNG stranded as-
sets (e.g. see https://www.reuters.com/markets/commodities/iea-says-unprecedented-supply-surge-
could-lead-lng-glut-2025-2023-10-24/). In Appendix G I compare my baseline projections with a sce-
nario where U.S. LNG export capacity stays constant at 2021 levels, a capacity shock of relatively the
same magnitude than the one analyzed in this section. In this alternative counterfactual, I find similar
results but in the opposite direction, with market effects that are twice as large in magnitude.
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ysis, while decreasing international LNG gas prices by 2.5% on average. Due to the
existence of gas-coal substitution in global power sectors, the shock also generates
spillovers on coal prices.

How do electricity mixes react to this change in relative fossil fuel prices? Panel (b)
of Figure G4 shows that in the U.S. the shock induces a decrease in gas generation
that is equivalent to an average 3.5 percentage point reduction in the gas share of the
electricity mix. Natural gas generation is almost exclusively replaced by renewable
generation, with a very limited coal-to-gas substitution effect. Meanwhile, the rest of
the world increases its reliance on gas-fired generation in response to the shock. Does
higher gas generation mostly substitute for coal or for renewable energy sources in
importing countries? Substitution patterns vary across time, with the shock inducing a
larger short-run decline in coal generation, while mostly reducing the renewable share
of the electricity mix in the long-run, by the time solar, wind and storage installation
costs reach their minimum level.

Effect on emissions The expansion of U.S. LNG capacity induces cumulative carbon
emission reductions in the U.S. of 2240 million metric tonnes over 2025-2070, equiva-
lent to a 6% reduction relative to baseline power sector emissions. Looking at the path
of emission reductions over time, panel (c) of Figure 12 shows that U.S. emissions are
always lower than in the baseline scenario, although the decarbonization effect tem-
pers after 2055. Results are consistent with the fact that lower gas generation is mostly
replaced by a higher adoption of renewables, with relative renewable growth rates un-
der the LNG expansion being specially high before renewable installation costs reach
their minimum level.

In the rest of the world, the effect of the shock on emissions reverses over time. In the
short-term, emissions decrease relative to the baseline because gas mostly substitutes
for coal in power generation. However, the change in emissions turns positive by 2035
and reaches a maximum around 2055. Long-term emission increases are consistent
with lower international natural gas prices inducing lower renewable investment. The
long-term emission increase offsets short-term reductions, and the cumulative effect
on rest of the world emissions is an increase of 391.1 million metric tonnes of CO2, or
0.1% relative to the baseline.37 This effect is small relative to U.S. emission reductions:
globally, the shock induces a cumulative reduction in emissions of 1848 million metric
tonnes, or 0.5% of baseline global power emissions.

37The aggregate effect of the shock on LNG importers also hides important heterogeneities across coun-
tries. This heterogeneity is driven by the initial power capacity mix, the local availability of fossil and
renewable resources, and also by the presence or absence of carbon pricing policies. Figure G5 in the
Appendix shows how emissions change over time across the world.
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Figure 12: Baseline counterfactual results: expansion of U.S. LNG export capacity
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Note: Panel (a) shows the evolution of annual price changes in the LNG expansion scenario relative to the baseline
scenario for both U.S. and international fossil fuel prices. Panel (b)shows the absolute annual change in generation
by fuel type and region relative to baseline. Renewables refers to solar and wind electricity production, with solar
generation including both direct sales by generators and sales by storage facilities. Panel (c) shows the absolute change
in annual emissions across regions relative to baseline.
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I incorporate upstream and midstream CO2 and methane emissions to my analysis to
provide a preliminary estimate of the life-cycle effect of the U.S. LNG export expan-
sion. In addition to the CO2 generated through the combustion of fuels in power gen-
eration, fossil fuel production and transportation generate both carbon and methane
emissions. As mentioned previously, discussion surrounding the potential environ-
mental effect of U.S. LNG exports has placed a large focus on the potential for LNG
trade to induce greater methane emissions. These additional emissions could offset
the power sector decarbonization effect of the shock, especially if the methane leakage
rate is high. To understand the extent to which this might be the case, I use existing
estimates of the emission intensity of fossil fuel production, transportation and lique-
faction from Howarth (2024), and apply them to the production and trade quantities I
predict in the two alternative scenarios. I next use the U.S. Environmental Protection
Agency’s most recent estimates of the social cost of greenhouse gas emissions (EPA,
2023) to arrive to a monetary metric of the present value of the climate effect of the
shock. Appendix E provides a detailed description of the methodology and assump-
tions used in this calculation.

Overall, I find that the U.S. LNG export shock generates cumulative social gains of
over 75 billion dollars by 2050. Taking into account upstream and midstream emis-
sions does not change the sign of the effect, but it does reduce the magnitude of the
social gains by two-thirds. It is important to highlight, however, that there is consid-
erable debate over the actual climate cost of methane emissions and the damage they
generate relative to carbon emissions. Implicitly, the methodology I borrow from EPA
(2023) values the social cost generated by a metric ton of methane to be 8-14 times
the cost of a carbon metric ton, with variation over time. In columns 2 to 4 of Table
6 I show that different measures of methane carbon-equivalency imply very differ-
ent emission changes from the shock. Under the worst-case assumption used in the
literature (Howarth, 2024), in which a ton of methane generates over 80 times the cli-
mate damage of a ton of CO2, the expansion of U.S. LNG capacity actually induces an
increase in carbon-equivalent emissions.38

38Kleinberg (2024) provides an overview of the issues arising from using carbon dioxide equivalence
metrics to compare the climate impact of greenhouse gases with different radiative efficiency, such as
carbon and methane. It also discusses how different assumptions on the global warming potential (GWP)
of methane relative to carbon can lead to very different conclusions on the life-cycle impact of LNG, as
suggested by results presented in Table 6.
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Table 6: Life-cycle effect of U.S. LNG expansion (2025-2070)

Change in Change in CO2-equivalent emissions
social cost Million mt

2020 USDbn GWP500 GWP100 GWP20

Upstream

Coal -27.41 -132.65 -242.27 -535.15

Gas 72.28 366.64 584.55 1166.75

Midstream
LNG trade 195.13 1078.93 1378.26 2177.98

Downstream

Power -309.44 -1848.4 -1848.4 -1848.4

Non-power -5.69 -33.4 -33.4 -33.4

Total -75.13 -568.88 -161.25 927.77

Notes: the change in the social cost of greenhouse gas emissions is calculated using the monetized
emission damages provided by EPA (2023), with future emission damages brought to 2021 present val-
ues using a 2.5% discount rate. Columns 3 to 5 show the change in CO2-equivalent emissions under
different global warming potentials (GWP) for methane according to the IPCC sixth assessment report
(Intergovernmental Panel on Climate Change , IPCC).

8.2 The role of technological progress

In my baseline analysis, I assume that renewable installation costs decline over time
according to current projections from industry analysts. However, the future evolu-
tion of renewable costs is highly uncertain, and projections have been consistently
revised in the past. In this section, I explore how the effect of the U.S. LNG export
shock changes when I assume a different trajectory for renewable installation costs.

I consider a scenario in which renewable costs decrease at a 25% lower annual rate
than in the baseline case in all countries. When comparing trajectories in the absence
of the U.S. LNG shock, I find that higher future renewable installation costs increase
future emission intensities everywhere: by 2070, the average global emission intensity
is 12.5% higher than it would be under the original renewable cost projection. How-
ever, the increase in emission intensity is much less pronounced in markets that are
already in a decarbonization path, such as the U.S., China or the EU.
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Figure 13: Trajectories without LNG shock under higher renewable costs, relative to
original projection
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Figure 14: Emission changes under U.S. LNG export shock and higher renewable costs
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Note: Each plot shows the annual change in aggregate emissions for a given region of interest relative to the baseline
scenario of U.S. LNG export growth, both for the original renewable cost projections and the alternative case in which
renewable costs decrease at a slower rate.

Since higher renewable installation costs reduces renewable entry more in the rest of
the world than in the U.S., this alternative scenario features higher long-term baseline
U.S. LNG exports, as shown in the rightmost panel of Figure 13. Because of this,
the expansion of U.S. LNG export capacity has a larger effect in fossil markets: U.S.
LNG exports now increase by 25% and U.S. gas prices grow by 6.5% (vs. increases of
20% and 5.4% under the original cost projections). When looking at global emission
changes, I find that under higher renewable costs the long-term emission increase in
the rest of the world due to the U.S. LNG shock is more pronounced. However, this
is not enough to offset the higher emission reductions that are achieved domestically.
In fact, assuming a slower rate of technogical progress increases annual aggregate
emission reductions from the U.S. LNG shock by an average 32%.
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My model does not consider endogenous technological progress, and thus does not
capture the possibility that the expansion of LNG exports might affect the rate of de-
cline of renewable installation costs. However, note that both in the original version of
my counterfactual and under the alternative scenario described above, global renew-
able installations increase on aggregate every year in response to the shock. In a model
of technological progress with learning-by-doing and global technological diffusion,
this increase in global renewable adoption would generate endogenously lower in-
stallation costs in the future, mitigating the long-term emission gains that the shock
generates in importing countries.

8.3 Interaction with domestic carbon policies

The domestic price of fossil fuels is affected both by market forces and by domestic
policy interventions. One form of intervention that has already been implemented
or is under discussion in many countries are carbon cap-and-trade schemes. These
schemes set a cap on the total amount of emissions that can be generated in given
year, and allow firms to buy and sell permits to emit. The price of these permits is
determined by the market, and is an important determinant of the cost of production
for power generators of different types.39 Can better decarbonization outcomes be
achieved if U.S. LNG exports are combined with binding domestic carbon caps? Table
7 evaluates the cumulative social cost savings achieved under alternative policy com-
binations, relative to the baseline scenario where only U.S. export capacity currently
under construction is ever built.

First, I ask whether emission social cost reductions would be higher if the U.S. imple-
mented a carbon cap to achieve the same power-related emission reductions than un-
der the LNG expansion, but without actually expanding its export capacity (Scenario
1 in Table 7). I find that, indeed, if the U.S. were able to implement this power sec-
tor carbon cap, total social cost reductions would be almost 5 times larger than those
achieved through the expansion of LNG export capacity (Scenario 2 in Table 7). This
is due to two main reasons. First, although the LNG expansion generates short-term
emission reductions in the rest of the world, the present monetized value of this emis-
sion reduction is lower than the present cost of long-term emission increases. Second,
LNG exports also generate additional midstream methane emissions that contribute
to reducing social cost savings.

If implementing a carbon cap is not feasible in the U.S., would it be possible to mitigate
long-term emission increases from the export shock if climate-concerned importers
implemented their own carbon caps? In Scenario 3 of Table 7, I consider a case in
which U.S. expands its LNG export capacity and the EU, UK and Japan impose a
binding power sector carbon cap in response to avoid cheaper natural gas from re-

39In my baseline analysis I assume that the only markets that have a cap-and-trade scheme in place at
any point in the future are the EU and the UK, and feed the existing schedule for the evolution of carbon
allowances as a constraint in my model simulation. The allowance limit that I set based on projections is
not always binding in these markets.
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ducing renewable adoption.40 I find that under this combination of policies, global
social cost savings are 62% larger than under Scenario 2. The imposition of carbon
caps in these importing countries both reduces long-term CO2 emission increases from
global power generation and mitigates methane emission increases from the shock, by
slightly reducing equilibrium LNG exports.

Table 7: Change in social greenhouse costs under alternative policy combinations

Scenario
Change in GHG social cost

Billion USD (2021 values)

Power only Total

(1) Baseline LNG capacity + U.S. CO2 cap -352.26 -367.04

(2) Higher LNG capacity + no CO2 cap - 309.44 -75.13

(3) Higher LNG capacity + allies CO2 cap -349.65 -122.34

Notes: Greenhouse gas (GHG) social cost calculated using the methodology detailed in EPA (2023). See
subsection text for details on each of the scenarios.

8.4 Policy reversal and carbon lock-in

In my baseline results, U.S. LNG exports increase emissions in the rest of the world
after 2050, mitigating aggregate decarbonization gains from the policy. Could the U.S.
avoid long-term emission increases in the rest of the world if it reverts its LNG export
capacity back to baseline levels after that year?

In this section, I consider what would happen under a LNG capacity reversal in 2050.
To focus just on the effect in the rest of the world, I assume that the U.S. can imple-
ment a carbon cap after that year to achieve the same emission gains than under the
permanent LNG capacity expansion. I consider two possible scenarios of policy rever-
sal. First, I assume that the U.S. can fully commit to a policy of reverting back LNG
capacity by 2050, so that agents perfectly foresee the shock and adjust their strategies
accordingly. Next I compare this scenario with one in which full commitment is not
possible. Agents believe that U.S. LNG export capacity will be permanently higher
until the capacity reversal shock hits in 2050, and they adjust their expectations only
after this happens.

Results are presented in Figure 15. As panel (c) shows, the policy is ineffective in
reverting long-term emissions in the rest of the world (in both the full-commitment
and no-commitment cases) and actually induces higher emissions in some periods.

40In my baseline analysis I also assume that the EU and UK implement carbon cap-and-trade schemes,
but carbon allowance levels in these markets remain constant after 2050, the last year for which I have
data on allowance projections. In this exercise, I set carbon allowance levels that constrain annual power
sector emissions to be at most those produced under the absence of the LNG export shock. This carbon
cap effectively inhibits any future emission gains from the shock in these markets.
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This finding highlights the risk of carbon lock-in in settings with sunk investments
and long-lived assets. The expansion of U.S. LNG export capacity generates a long-
term increase in gas generation capacity in the rest of the world, which is not easily
reversible. Because gas generation capacity is higher by the time U.S. goes back to its
baseline LNG export infrastructure, gas generation remains permanently higher in the
future. The permanent increase in gas generation is even more pronounced if agents
do not consider the future LNG reversal when making their investment decision be-
fore 2050.

How can the policy reversal induce even higher emissions than in the permanent ex-
pansion scenario? As discussed, when U.S. export capacity goes back to its baseline
levels in 2050 it still faces a permanently higher gas demand from the rest of the world.
This higher international gas demand is now combined with a lower LNG gas sup-
ply after 2050, which induces a sizable increase in LNG prices in the first years after
2050.41 Because LNG prices increase, coal generators in LNG importing countries can
now compete with gas generators in more favorable terms, which induces an increase
in emissions from coal.

41The price increase vanishes in the long-term because by 2060 there is slack in U.S. baseline LNG capac-
ity, which means that the additional global gas demand can be absorbed easily.
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Figure 15: Effect of U.S. LNG expansion reversal in 2050
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Note: Every panel shows the evolution of a variable of interest in alternative scenarios relative to the baseline case
in which only U.S. LNG export capacity currently under construction is ever built. “U.S. LNG capacity permanently
higher” refers to the main counterfactual described in Subsection 8.1. “U.S. LNG capacity reverted to baseline, full
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the reversal to baseline capacity in 2050 is not anticipated by market players.
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9 Conclusion

Public and academic discussion on potential approaches to incentivize power decar-
bonization often focuses on domestic-oriented policies, such as the provision of subsi-
dies to renewable generation or the imposition of carbon taxes. Furthermore, analyses
of the effects of these policies seldomly take into account international spillovers. This
paper develops a framework to study the determinants of power sector investment
and decarbonization in a global context. It focuses on one particular driver of interna-
tional policy spillovers: the globalized nature of fossil fuel markets.

Analyzing the potential effects of an expansion of U.S. LNG export capacity, I draw
two main lessons. First, domestic regulation of fossil fuel trade infrastructure can
have substantial effects on worldwide fossil fuel prices and, through them, on inter-
national power sector investment decisions. Second, this might generate a trade-off
between local and global emission reductions. In my setting, the overall decarboniza-
tion effect of the U.S. LNG export shock is mitigated by long-term emission increases
in importing countries. I find that this downside can be reduced by combining the
U.S. LNG export increase with carbon caps in major importing countries, highlighting
the importance of international climate policy coordination to achieve global emission
reductions. A reversal of the LNG infrastructure expansion, on the contrary, is not suc-
cessful at reducing long-term emission increases in foreign countries. The persistence
of the shock under a policy reversal suggests that taking into account the long-term
nature of infrastructure investments is critical to the design of succesful decarboniza-
tion policies.
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A Additional descriptive figures and tables

Figure A1: Carbon intensity of electricity production by country
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Source: Ember.

Figure A2: Change in power sector emission intensity relative to 2005
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Table A1: Fuel share of electricity generation and local fuel prices

log(Fuel share of elec.generation)
Gas Coal

OLS IV OLS IV

(1) (2) (3) (4)

log(Gas price) -0.568∗∗∗ -2.44∗∗∗ -0.0002 2.87∗

(0.113) (0.507) (0.120) (1.57)
log(Coal price) 1.02∗∗∗ 3.62∗∗∗ -0.397∗∗ -3.36∗

(0.168) (0.665) (0.182) (1.94)
log(GDP, 2015 prices and PPP) -0.330∗∗∗ 0.028 0.544∗∗∗ 0.043

(0.063) (0.110) (0.064) (0.250)

Observations 259 252 257 250
Adjusted R2 0.343 -0.177 0.495 -0.053
F-test (1st stage), log(Gas price) 104.0 86.6
F-test (1st stage), log(Coal price) 84.9 94.3

Region fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓

Notes: Standard errors in parentheses. Estimation draws on annual data from 51 countries
for 2000-2023. IV columns instrument fossil fuel prices with local reserves. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1

Figure A3: Evolution of global LNG import capacity utilization
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B Model extensions

B.1 Intermittency and storage

In the model outlined above, renewable generators can produce electricity at all times.
This assumption rules out one of the main challenges to increasing the penetration of
renewable power in electricity grids: intermittency. Because solar generators are un-
able to produce electricity during parts of the day, in the absence of electricity storage
fossil-based generators have an incentive to remain in the market to fill this gap. The
extension outlined below incorporates intermittency for solar generators, and adds
endogenous entry of storage facilities.42

Static game I assume that every period in my model contains two sub-periods ti:
day (tday) and night (tnight). Each sub-period has a different inelastic demand level,
Dti . Gas, coal and wind generators have the same production function during both
sub-periods, but solar generators are constrained to produce only during the day, i.e.
the effective capacity of a solar generator is given by

k̃ω(s)ti
=

{
φ f kω( f )ti

if ti = tday

0 if ti = tnight
(A1)

There is a fifth type of agent that can be active in the market: storage facilities (b). If
active, storage facilities can purchase electricity from solar generators during the day,
store it and sell it during the night. I assume that storage facilities pay solar generators
the price at which they are indifferent between selling electricity to them or selling it
in the regular market, i.e. the day electricity price.

The aggregate supply function of storage facilities active during t is given by

Qbti(pelec
tday

, pelec
tnight

) =

{
0 if ti = tday

βb min(Kbt, φsKst) if ti = tnight and pelec
tday

≤ pelec
tnight

(A2)

where βb ∈ [0, 1] is a parameter representing energy losses in storage. Note that stor-
age facilities will only supply electricity during the night if they can purchase their in-
put (solar power) at a price lower or equal to their selling price. Note also that storage
supply is constrained by both the capacity of storage facilities and solar generators.

Given these assumptions, electricity market clearing in period t requires both of the
following conditions to hold:

Dtday = φsKst −
1
βb

Qbtnight(pelec
tday

, pelec
tnight

) + φwKwt + ∑
f∈{c,g}

q̃ f t(pelec
tday

, p f t, ϵ f t)K f t (A3)

Dtnight = Qbtnight(pelec
tday

, pelec
tnight

) + φwKwt + ∑
f∈{c,g}

q̃ f t(pelec
tnight

, p f t, ϵ f t)K f t (A4)

42A similar stylized approach to intermittency and storage is used within a macro climate framework in
Gentile (2024). Gowrisankaran, Reynolds and Samano (2016) and ? explicitly model the stochastic nature
of renewable power generation, while Butters, Dorsey and Gowrisankaran (2021) studies battery storage
adoption in an equilibrium industry model with dynamic supply choice.
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Both day and night markets clear jointly, since storage demand for solar power re-
duces the supply of solar power during the day.

Dynamic strategies of storage facilities I assume that storage facilities that enter a
market have a fixed operating lifetime Tb and fixed maintenance costs Fb. The entry
of storage facilities is decided in exactly the same way as all generator types. Nb
potential entrants will observe time-varing storage entry costs κbt and a random entry
shock, and decide whether to enter the market given their expected profits.

B.2 Cap-and-trade emission trading scheme

My sample of markets includes the European Union and the UK, both of which have
implemented cap-and-trade emission trading schemes. If the limit of CO2 allowances
in these markets is binding, a shock to the price of gas will not affect their aggregate
level of CO2 emissions but will impact the relative demand for natural gas and coal,
with potential implications for global fossil fuel prices. In order to properly account
for this feature, I now extend my model to incorporate a cap-and-trade emission trad-
ing scheme.

Under a cap-and-trade scheme, the emission intensity of generators becomes a rele-
vant factor in their production decisions. I modify the profit function in (1) as follows:

max
qω( f )jt

πω( f )jt = pelec
jt qω( f )jt −

(
β1 f γ1 f jt p f jt + β2 f

qω( f )jt

kω( f )jt
+pCO2jte f jt + χ f t + ϵ f jt

)
qω( f )jt

∀ω ∈ Ω f jt, ∀ f ∈ {c, g} (A5)

where e f jt is the emission intensity of a generator of type f at time t and market j,
and pCO2jt is the price of CO2 allowances. The optimal production choice of fossil fuel
generators will now imply an equilibrium demand for CO2 allowances, given by

DCO2
jt (pelec

jt , p f jt, pC02jt) =
(

∑
f∈{c,g}

e f jtq̃ f jt(pelec
jt , p f jt, pCO2jt)K f jt

)
+ DC02

jt (A6)

where, as before, q̃ f jt is the optimal capacity use of generators of type f at time t. As-
suming all generators of the same type have the same emission intensity, this optimal
capacity use is again homogeneous within a given generator type. DCO2

jt is the de-
mand for CO2 allowances from other sectors of the economy, which I assume to be
exogenous.

The supply of CO2 allowances is set by the government, time-varying, and exoge-
nous in my model. Given an aggregate CO2 allowance supply QCO2

jt , the price of
CO2 allowances is determined by the intersection of the aggregate demand for CO2
allowances and the supply of CO2 allowances. Equilibrium in a market with a cap-
and-trade emission trading scheme will thus require that fossil fuel demand equals
fossil fuel supply (for both gas and coal), and that the CO2 market clears, i.e.

DCO2
jt (pelec

jt , p f jt, pC02jt) = QCO2
jt (A7)
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C Model computation: algorithm description

In this section, I outline the algorithm I use to find the equilibrium in my model. The
algorithm solves a nested problem. In the inner nest, it looks for the path of equilib-
rium domestic fossil fuel prices as a function of international fossil fuel prices. In the
outer nest, it iterates over guesses for international fossil fuel prices until trade balance
is satisfied every period.

I denote by pn∗
g = {pgT0 , pgT0+1, ..., pgT̄} and pn∗

c = {pcT0 , pcT0+1, ..., pcT̄} the guess n of
the vector that contains the path of each international fossil fuel price.

Algorithm 1 Global equilibrium
1: Input: Number of periods T, initial vector of global fossil fuel prices p∗

g and p∗
c ,

country set J , convergence tolerance ϵ
2: Initialize convergence flag err global = 1
3: while err global > 0 do
4: for each country j ∈ J do
5: Initialize country convergence flag err j = 1 and electricity convergence flag

err elec j = 1
6: while err j > 0 do
7: Guess vector of domestic fossil fuel prices pg and pc
8: Solve for fossil fuel supply and non-electricity fossil fuel demand
9: Solve for electricity fossil fuel demand:

10: while err elec j > 0 do
11: Guess entry/exit strategies
12: Compute state in each period given these strategies
13: Compute electricity prices and profits given each state
14: Compute value functions
15: Update entry/exit strategies given value functions
16: Check dynamic problem convergence: Determine if changes in entry

and exit strategies are within tolerance ϵ
17: if all changes ≤ ϵ then
18: err elec j = 0
19: end if
20: end while
21: Check market clearing condition: Ensure there is no excess supply in do-

mestic fuel markets
22: if D f jt − S f jt ≥ ϵ ∀t ∈ T, f ∈ {c, g} then
23: err j = 1
24: else
25: Update vectors of domestic fossil fuel prices pg and pc
26: end if
27: end while
28: end for
29: Compute trade deficit each period given pn∗

g and pn∗
c as the difference between

total imports and total exports
30: if ∑j∈J M f j − ∑j∈J X f j ≤ ϵ ∀ f ∈ {c, g} then
31: err global = 0
32: end if
33: end while
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D Data Appendix

D.1 Projections

In this section I provide detail on my approach to generate projections for the exoge-
nous variables in my model up to 2050.

Electricity technologies Projections for generator installation costs by type (solar,
wind, natural gas and coal) come from IEA I use the following projections to extend
my time series I project electricity installation costs per market leveraging projections
from International Energy Agency (2024c). I calculate an average implied compound
annual growth rate (CAGR) based on IEA’s projections and apply it to each market in
my sample. For storage technologies, I rely on projections from the National Renew-
able Energy Laboratory (National Renewable Energy Laboratory, 2024). Their report
contains projections for the U.S. for both installation costs and fixed operation and
maintenance costs, up to 2050. To account for potential cross-country heterogeneity, I
assume that the relative installation cost of storage in each market with respect to the
U.S. is the same as the relative installation cost of solar generators.43 Utility-scale bat-
teries are installed alongside existing or new solar generating facilities. Motivated by
this fact, I assume a per-country installation cost shifter sb equal to the one I compute
for solar generators.

LNG export capacity For countries excluding the U.S., I leverage data from the
Global Energy Monitor (GEM) Infrastructure Tracker to obtain information on under-
construction and proposed LNG terminals. GEM Infrastructure Tracker contains data
on under-construction and proposed LNG export capacity by country and the ex-
pected completion year of each project. In my baseline exercise, I assume that only
projects that have already reached Final Investment Decision (FID) will be completed.44

In robustness checks, I also consider a scenario where all proposed projects that have
not yet reached FID will also be built.

Electricity demand I build projections for the electricity demand faced by generators
in my model using the most recent EIA outlooks for the U.S. and international markets
(EIA, 2023a,b). For the U.S., EIA provides forecasts for annual electricity generation
by fuel at the national level up to 2050. I substract all generation types that are taken
as exogenous supply in my model from the annual expected electricity generation
to arrive at a measure of projected residual demand. I use the same annual growth
rates for my three markets in the U.S.. For markets excluding the U.S., EIA provides
generation by type forecasts at 5-year intervals, up to 2050. I construct the implied
CAGR from these projections and harmonize EIA’s market classifications with mine.45

43Surveys of utility-scale storage installation costs in different countries support this assumption, show-
ing lower costs for storage in the European Union and China relative to the U.S. (IRENA, 2024).

44I exclude currently under construction Russian LNG export capacity, as economic sanc-
tions have halted their development. See https://www.gem.wiki/Ust Luga LNG Terminal and
https://www.gem.wiki/Arctic LNG 2 Terminal for details.

45EIA provides country-specific projections for China, India, Japan, South Korea, Mexico, Canada and
Russia, which I take directly from this source. For other markets, I match my market definitions with
EIA’s, which is in general more aggregate (e.g. EIA has a single forecast for all Western Europe, which I
apply both to the European Union and UK.)
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Fossil fuel supply and non-electricity demand intercepts I project the intercepts of
the fossil fuel supply functions and the non-electricity gas demand function under the
assumption that expected supply and demand growth rates are a good proxy for the
growth rate of non-price supply and demand determinants. To that end, I use EIA
outlooks for the U.S. and international markets and follow the same annualization
and harmonization procedure as for electricity demand.

Other exogenous variables Finally, I assume that trade costs, liquefaction costs,
pipeline gas capacity, and coal export capacity remain constant at 2022 levels. I also
assume no technological progress in the efficiency of fossil fuel generators or the ca-
pacity factor of wind and solar generators.
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E Life-cycle emissions calculations

In this section, I provide details on the procedure and sources used to calculate life-
cycle emissions per country and fuel type under counterfactual scenarios.

E.1 Natural gas

I calculate life-cycle greenhouse emissions as the sum of the following components:

Egas
ℓjt = Eup,mid

ℓjt + Eelec
ℓjt + Eother

ℓjt + ELNG
ℓjt (A8)

where ℓ denotes a greenhouse gas, either methane (CH4) or carbon dioxide (CO2), j is
a country, and t a year.

Eup,mid
ℓjt are upstream and midstream emissions. I obtain CO2 and CH4 upstream and

midstream emission factors (in grams of greenhouse gas per megajoule) from Howarth
(2024). I multiply these factors by the amount of natural gas produced in each coun-
try and year to obtain aggregate emissions. Howarth (2024) focuses its analysis in
the U.S., but upstream and midstream emissions are known to vary across the world
due to the use of different abatement technologies. I adjust methane emission factors
for countries other than the U.S. using estimates from International Energy Agency
(2024a), which provides country-specific scaling factors for upstream methane natu-
ral gas emissions for the world's top producers. Given that these scaling factors only
apply to methane, I assume that all countries have the same upstream and midstream
CO2 intensity.46

Eelec
ℓjt are emissions from fuel combustion in electricity generation. I derive implicit

CO2 emission factors from EIA's 2023 International Energy Outlook. For the year
2022, EIA reports both electricity generation and power emissions by fuel for major
countries and regions. Using this data, I calculate the CO2 emission intensity of nat-
ural gas electricity generation per EIA country/region, and apply it to my sample.
Following Howarth (2024), I assume no CH4 emissions from downstream natural gas
combustion.

Eother
ℓjt are downstream emissions generated from activities excluding power genera-

tion. I follow a similar procedure than above, an obtain implicit CO2 emission factors
from 2022 data on aggregate emissions and total fuel consumption provided in EIA's
2023 International Energy Outlook. I substract power sector fuel consumption and
emissions from the aggregate data to arrive to a non-power emission intensity.47 As
above, I assume no CH4 emissions from non-electricity downstream fuel combustion.

Lastly, ELNG
ℓjt are emissions related to the liquefaction and transportation of natural

gas. I assign all LNG emissions to the producer, using Howarth (2024) CO2 and CH4
LNG emission intensity estimates.

46For countries in my sample not included in International Energy Agency (2024a), I use the median IEA
scaling factor for countries in the same region.

47Note that EIA uses the same non-power emission intensity per unit for all countries/regions excluding
the U.S..
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E.2 Coal

For coal, I calculate life-cycle emissions as follows:

Ecoal
ℓjt = Eup,mid

ℓjt + Eelec
ℓjt (A9)

Unlike in the case of natural gas, I do not have estimates for the emission intensity of
thermal coal international trade or non-electricity uses.48 For upstream and midstream
emissions, I use estimates from Howarth (2024), which do not distinguish across coun-
tries. For electricity emissions, I follow the same procedure as for natural gas, using
EIA data.

48Almost the entirety of thermal coal is used for electricity generation, and I hold non-electricity demand
constant in my model across scenarios.
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F Estimation appendix

F.1 Electricity supply estimation: coal and gas generators

The procedure detailed in sub-section 6.1 allows me to recover the two main parame-
ters of interest in the supply function of coal and gas generators: β1 f , which captures
the relationship between fuel prices and generator costs, and β2 f , the slope of the gen-
erator supply curve. The estimation sample I use differs to the sample used in full
model simulations, both in terms of the time aggregation (monthly vs. annual) and
in terms of the markets and years included. While I use the same estimates for β1 f
and β2 f for my whole simulation sample, I calibrate market-specific cost shifters χ f jt
to better match the observed relationship between capacity use and fossil fuel prices
in the data. This section details my calibration approach.

I first use the fact that, from the profit function in (1), the optimal interior solution to a
generator's production problem in market j and time t is given by

q f jt

K f jt
=

pelec
jt − β1 f p̃ f jt − χ f jt − ϵ f jt

2β2 f
∀ f ∈ {c, g} (A10)

where I assume that ϵ f jt are mean-zero errors that are uncorrelated across fuel types
and time.

Consider a market where both coal and gas generators are active. Equation (A10)
can be transformed to obtain an expression for the equilibrium electricity price as a
function of the capacity use of gas generators:

pelec
jt = 2β2g

q f jt

K f jt
+ β1g p̃gjt + χgjt + ϵgjt (A11)

Subtituting this expression in the optimal capacity use choice of coal generators yields:

qcjt

Kcjt
=

2β2g
q f jt
K f jt

+ β1g p̃gjt + χgjt + ϵgjt − β1c p̃cjt − χcjt − ϵcjt

2β2c
(A12)

Which can be re-arranged to get

χcjt − χgjt = 2β2g
qgjt

Kgjt
− 2β2c

qcjt

Kcjt
+ β1g p̃gjt − β1c p̃cjt + ϵcjt − ϵgjt (A13)

and taking expectations over shocks ϵ f jt

E(χcjt)− E(χgjt) = E
(

2β2g
qgjt

Kgjt
− 2β2c

qcjt

Kcjt
+ β1g p̃gjt − β1c p̃cjt

)
(A14)

Equation (A14) identifies the difference between coal and gas unobserved shifters as a
function of relative capacity uses and the relative price of the inputs used by both gen-
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erator types. Coal and gas shifters cannot be identified separately without information
on market electricity prices. I first normalize χgjt = ¯̂χgt, where ¯̂χgt is the median an-
nual χ̂gjt recovered from my estimation in 6.1. Given χgjt, I recover χcjt using equation
(A14) and my estimates for β̂1 f c and β̂2 f c, together with data on annual capacity use
by fuel and efficiency-adjusted fossil fuel prices.49

F.2 Firm exit estimating equation

Under the assumption that maintenace cost shocks are logit distributed, the probabil-
ity that a generator of type f and age a in period t decides to remain in the market for
an additional period is given by

1 − ζa f t =
exp

(
βE[Va+1 f (St+1)|St]−Fa f

σexit
f

)
1 + exp

(
βE[Va+1 f (St+1)|St]−Fa f

σexit
f

) (A15)

From this expression, solving for the expected value of staying in the market yields:

σexit
f

(
log(1 − ζa f t)− log(ζa f t)

)
︸ ︷︷ ︸

ζ̃a f t

+Fa f = βE[Va+1 f (St+1)|St] (A16)

From equation (4) and under the logit shock assumption, the expected value of re-
maining as an incumbent in t+1, E[Va+1 f (St+1)|St], has the following form:

E[Va+1 f (St+1)|St] =π f t+1+

σexit
f

{
log

[
exp

(βE[Va+2 f t(St+2)|St+1]− Fa+1 f

σexit
f

)
+ 1

]
+ γ

}
(A17)

where γ is the Euler constant and the second term represents the inclusive value of
drawing a maintenance cost shock. Plugging (A16) in (A17) yields

1
β

(
σexit

f ζ̃a f t + Fa f

)
= π f t+1 + σexit

f

{
log

[
exp ζ̃a+1 f t+1 + 1

]
+ γ

}
(A18)

After re-ordering terms, (A18) becomes

ζ̃a f t − β
{

log
[

exp ζ̃a+1 f t+1 + 1
]
+ γ

}
= β

π f t+1

σexit
f

−
Fa f

σexit
f

(A19)

49In Appendix X I show that, in equilibrium, the profit of gas and coal generators depends on the differ-
ence between χgjt and χcjt but not on the level of the cost shifters, so that the normalization that I impose
does not affect my estimation of fossil fuel generator profits. This normalization does, however, affect
the level of electricity prices and, through it, the profit of renewable generators. A higher χgjt will imply
a higher electricity price and, all else equal, should lead to a higher entry rate of renewable generators.
When I estimate market-specific installation costs based on observed entry rates, the installation cost
shifters that I recover will partially absorb this effect.
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F.3 Additional estimation results

Table A2: Electricity supply: First stage results

Gas Coal

Eff-adj.
fossil price

Capacity
use

Eff-adj.
fossil price

Capacity
use

(1) (2) (3) (4)

Brent oil price 0.522∗∗∗ 0.0002 0.488∗∗∗ 0.001∗

(0.100) (0.0004) (0.031) (0.0006)
Renewables cap. use -9.62∗ -0.502∗∗∗ -6.91∗∗∗ -0.468∗∗∗

(5.62) (0.031) (1.60) (0.055)

Observations 2,226 2,226 2,226 2,226
Adjusted R2 0.794 0.253 0.887 0.237
Within Adjusted R2 0.061 0.100 0.159 0.040
F-test (1st stage) 14.9 122.5 207.1 47.5

Region x year fixed effects ✓ ✓ ✓ ✓
Month fixed effects ✓ ✓ ✓ ✓

Notes: Elec. supply estimation draws on monthly data from 2016 to 2023 for electricity markets in US,
EU, Korea and Japan. Robust standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A3: Non-electricity gas demand: first stage results

log(Price)
(1)

log(Gas Reserves per capita) -0.122∗∗

(0.050)
log(Brent oil price) 0.376∗∗∗

(0.061)
log(GDP p.c.) 0.794∗∗∗

(0.248)
log(Population) 1.74

(1.97)
log(GDP p.c.) × OECD 0.790∗

(0.404)
log(Population) × OECD -5.40∗∗

(2.15)

Observations 421
Adjusted R2 0.852
Within Adjusted R2 0.458
F (1st Stage) 50.4

Country fixed effects ✓
2016+ dummy x Country fixed effects ✓

Notes: Newey West standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A4: Fossil fuel supply estimation: first stage results

log(Price)
Gas Coal

(1) (2)

log(Elec. gen.) × f share (2000) 0.043∗∗∗ 0.013∗∗∗

(0.011) (0.002)
log(Reserves) -0.132 0.124∗∗

(0.097) (0.053)
log(Oil production) 0.078

(0.194)

Observations 310 298
Adjusted R2 0.664 0.752
Within Adjusted R2 0.141 0.228
F-test (1st stage) 44.2 60.2

Country fixed effects ✓ ✓
2016+ dummy x Country fixed effects ✓ ✓

Notes: Robust standard errors in parentheses. f share refers to the gas and coal share of electricity
generation in columns (1) and (2) respectively. Supply estimation draws on annual data from 2000 to
2021 for markets accounting for 82% and 95% of natural gas and coal global production respectively.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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G Additional counterfactual results

Figure G4: Effect of keeping U.S. LNG export capacity constant at 2021 levels
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Note: Panel (a) shows the evolution of annual price changes in the case where U.S. LNG export capacity is held
at 2021 levels relative to the baseline scenario for both U.S. and international fossil fuel prices. Panel (b)shows the
absolute annual change in generation by fuel type and region relative to baseline. Renewables refers to solar and wind
electricity production, with solar generation including both direct sales by generators and sales by storage facilities.
Panel (c) shows the absolute change in annual emissions across regions relative to baseline.

61



Figure G5: Baseline counterfactual results: effect heterogeneity
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Note: Each panel shows, for a given selection of countries, the evolution of the annual absolute change in power
sector emissions in the case of the U.S. LNG export expansion relative to the baseline scenario in which only U.S. LNG
export capacity that is currently under construction is ever built.
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H Comparison with other projections

Table A5: Power installed capacity projections: baseline vs. EIA (2023)

Installed capacity (GW)

Country Fuel EIA Model

2022 2030 2050 2022 2030 2050

Coal 201.2 105.0 72.6 183.2 86.5 20.4

Natural gas 444.9 526.0 675.6 535.3 573.2 585.8

Solar + Storage 131.4 463.8 1084.0 161.7 450.7 1272.4US

Wind 145.0 300.8 374.1 118.7 299.5 446.5

Coal 5.8 0.0 0.0 9.4 6.5 7.3

Natural gas 32.5 51.2 68.5 19.5 20.7 28.3

Solar + Storage 3.6 3.6 3.6 5.0 24.7 187.5Canada

Wind 15.7 23.2 129.2 16.9 31.0 62.4

Coal 8.6 8.6 8.6 4.6 4.4 4.5

Natural gas 44.2 45.2 55.8 43.8 47.2 54.7

Solar + Storage 7.5 10.5 45.5 9.3 32.6 133.9Mexico

Wind 8.1 8.1 8.1 4.2 6.1 7.9

Coal 5.9 4.1 4.1 4.9 1.7 0.0

Natural gas 24.0 27.2 16.4 13.8 13.6 9.5

Solar + Storage 13.0 13.0 13.0 20.7 32.5 82.3Brazil

Wind 19.7 26.8 48.3 26.4 68.5 84.1

Coal 1163.7 1203.1 1203.1 1002.0 1053.7 923.3

Natural gas 105.9 157.3 441.6 153.2 197.6 238.1

Solar + Storage 466.0 887.5 1046.9 358.2 1108.6 3166.2China

Wind 355.8 428.3 745.7 255.3 672.3 1135.3

Coal 291.1 310.2 310.2 230.2 268.0 337.1

Natural gas 30.6 36.1 56.0 35.5 58.1 147.8

Solar + Storage 58.0 209.1 1730.8 58.8 404.7 2114.6India

Wind 39.0 104.3 250.0 64.3 121.3 179.6

Coal 63.7 42.1 40.8 55.0 55.0 37.5

Natural gas 95.3 100.6 78.2 82.1 83.0 56.7

Solar + Storage 76.2 85.8 110.8 77.4 182.4 561.4Japan

Wind 4.3 4.4 28.1 6.5 6.6 0.6

Coal 42.6 45.8 45.8 36.4 36.8 34.1

Natural gas 43.2 45.6 35.5 42.8 47.1 55.0

Solar + Storage 15.7 15.7 16.0 37.0 70.2 214.8South Korea

Wind 1.9 13.3 59.8 1.6 1.9 0.8

Note: EIA estimates come from the EIA International Energy Outlook 2023 (EIA, 2023b).
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Table A6: Electricity mix projections: baseline run vs. IEA (2023) and EIA (2023)

Share of electricity mix (%)
Country Fuel Model IEA EIA

2022 2030 2050 2022 2030 2050 2022 2030 2050

Coal 26 9 2 28 6 0 27 11 6

Natural gas 59 50 34 53 43 9 53 34 27

Solar 7 18 37 6 23 56 6 27 41US

Wind 9 23 28 13 28 35 14 28 27

Coal 21 2 0 8 4 1 7 4 3

Natural gas 35 18 8 25 13 6 50 49 23

Solar 18 22 28 18 33 33 11 10 7Brazil

Wind 26 59 64 49 51 60 32 38 67

Coal 83 60 37 79 50 17 77 67 52

Natural gas 4 7 5 4 4 3 4 5 13

Solar 6 16 34 6 25 51 8 16 16China

Wind 7 16 25 11 21 29 10 11 19

Coal 91 65 36 85 66 22 81 67 29

Natural gas 0 5 10 3 4 4 5 4 2

Solar 5 24 49 7 22 52 6 17 56India

Wind 4 5 4 5 8 22 8 13 13

Coal 53 37 20 42 31 11 38 24 25

Natural gas 35 34 18 45 34 15 47 55 41

Solar 10 27 62 12 25 39 14 20 25Japan

Wind 1 2 0 1 10 35 1 1 10

Coal 27 8 3 29 4 0 - - -

Natural gas 27 20 9 33 16 3 - - -

Solar 18 35 60 12 31 38 - - -EU27

Wind 27 37 27 25 48 58 - - -

Coal 58 61 66 28 16 13 27 20 13

Natural gas 42 39 34 71 81 77 72 79 86

Solar 0 0 0 0 1 2 0 0 0Russia

Wind 0 0 0 1 2 9 1 0 1

Note: Electricity mix shares calculated excluding all electricity sources other than coal, natural gas, solar and wind.
IEA estimates come from the IEA World Energy Outlook 2023 (International Energy Agency, 2024c), while EIA esti-
mates come from the EIA International Energy Outlook 2023 (EIA, 2023b).
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